
Eduard Jirkovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9233816/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Primary prevention of chronic anthracycline cardiotoxicity with ACE inhibitor is temporarily effective in rabbits, but benefits wane in post-treatment follow-up. Clinical Science, 2022, 136, 139-161.	1.8	1
2	The effects of bisphenols on the cardiovascular system. Critical Reviews in Toxicology, 2022, 52, 66-87.	1.9	12
3	Vitamin C—Sources, Physiological Role, Kinetics, Deficiency, Use, Toxicity, and Determination. Nutrients, 2021, 13, 615.	1.7	150
4	Systematic review of pharmacokinetics and potential pharmacokinetic interactions of flavonolignans from silymarin. Medicinal Research Reviews, 2021, 41, 2195-2246.	5.0	28
5	Structure–Activity Relationship Study of Dexrazoxane Analogues Reveals ICRF-193 as the Most Potent Bisdioxopiperazine against Anthracycline Toxicity to Cardiomyocytes Due to Its Strong Topoisomerase Ilβ Interactions. Journal of Medicinal Chemistry, 2021, 64, 3997-4019.	2.9	14
6	Clinically Translatable Prevention of Anthracycline Cardiotoxicity by Dexrazoxane Is Mediated by Topoisomerase II Beta and Not Metal Chelation. Circulation: Heart Failure, 2021, 14, e008209.	1.6	24
7	Silymarin Dehydroflavonolignans Chelate Zinc and Partially Inhibit Alcohol Dehydrogenase. Nutrients, 2021, 13, 4238.	1.7	9
8	Investigation of Structure-Activity Relationships of Dexrazoxane Analogs Reveals Topoisomerase II <i>β</i> Interaction as a Prerequisite for Effective Protection against Anthracycline Cardiotoxicity. Journal of Pharmacology and Experimental Therapeutics, 2020, 373, 402-415.	1.3	14
9	Clearance of senescent cells during cardiac ischemia–reperfusion injury improves recovery. Aging Cell, 2020, 19, e13249.	3.0	79
10	<i>In vitro</i> and <i>in vivo</i> investigation of cardiotoxicity associated with anticancer proteasome inhibitors and their combination with anthracycline. Clinical Science, 2019, 133, 1827-1844.	1.8	10
11	79â€Effective cardioprotection against anthracycline cardiotoxicity in isolated cardiomyocytes and rabbits is based on dexrazoxane interaction with topoisomerase II beta instead of iron chelation by its metabolite ADR-925. , 2019, , .		0
12	Pharmacokinetics of the Cardioprotective Drug Dexrazoxane and Its Active Metabolite ADR-925 with Focus on Cardiomyocytes and the Heart. Journal of Pharmacology and Experimental Therapeutics, 2018, 364, 433-446.	1.3	15
13	Are cardioprotective effects of NO-releasing drug molsidomine translatable to chronic anthracycline cardiotoxicity settings?. Toxicology, 2016, 372, 52-63.	2.0	1
14	Cardioprotective effects of inorganic nitrate/nitrite in chronic anthracycline cardiotoxicity: Comparison with dexrazoxane. Journal of Molecular and Cellular Cardiology, 2016, 91, 92-103.	0.9	20
15	Cardiac troponins—Translational biomarkers in cardiology: Theory and practice of cardiac troponin highâ€sensitivity assays. BioFactors, 2016, 42, 133-148.	2.6	12
16	Synthesis and analysis of novel analogues of dexrazoxane and its open-ring hydrolysis product for protection against anthracycline cardiotoxicity in vitro and in vivo. Toxicology Research, 2015, 4, 1098-1114.	0.9	20
17	Experimental determination of diagnostic window of cardiac troponins in the development of chronic anthracycline cardiotoxicity and estimation of its predictive value. International Journal of Cardiology, 2015, 201, 358-367.	0.8	9
18	Molecular Remodeling of Left and Right Ventricular Myocardium in Chronic Anthracycline Cardiotoxicity and Post-Treatment Follow Up. PLoS ONE, 2014, 9, e96055.	1.1	38

Eduard Jirkovsky

#	Article	IF	CITATIONS
19	Early and delayed cardioprotective intervention with dexrazoxane each show different potential for prevention of chronic anthracycline cardiotoxicity in rabbits. Toxicology, 2013, 311, 191-204.	2.0	28
20	Oxidative Stress, Redox Signaling, and Metal Chelation in Anthracycline Cardiotoxicity and Pharmacological Cardioprotection. Antioxidants and Redox Signaling, 2013, 18, 899-929.	2.5	267
21	Chronic Anthracycline Cardiotoxicity: Molecular and Functional Analysis with Focus on Nuclear Factor Erythroid 2-Related Factor 2 and Mitochondrial Biogenesis Pathways. Journal of Pharmacology and Experimental Therapeutics, 2012, 343, 468-478.	1.3	48
22	Proteomic insights into chronic anthracycline cardiotoxicity. Journal of Molecular and Cellular Cardiology, 2011, 50, 849-862.	0.9	57
23	In vivo and in vitro assessment of the role of glutathione antioxidant system in anthracycline-induced cardiotoxicity. Archives of Toxicology, 2011, 85, 525-535.	1.9	24
24	Daunorubicin does not induce immunohistochemically detectable endothelial dysfunction in rabbit aorta and femoral artery. Histology and Histopathology, 2011, 26, 551-62.	0.5	0
25	Comparison of Clinically Used and Experimental Iron Chelators for Protection against Oxidative Stress-Induced Cellular Injury. Chemical Research in Toxicology, 2010, 23, 1105-1114.	1.7	61