Christina K Remucal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9233475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Factors Affecting the Yield of Oxidants from the Reaction of Nanoparticulate Zero-Valent Iron and Oxygen. Environmental Science & Technology, 2008, 42, 1262-1267.	10.0	625
2	Ligand-Enhanced Reactive Oxidant Generation by Nanoparticulate Zero-Valent Iron and Oxygen. Environmental Science & Technology, 2008, 42, 6936-6941.	10.0	304
3	A critical review of the reactivity of manganese oxides with organic contaminants. Environmental Sciences: Processes and Impacts, 2014, 16, 1247.	3.5	213
4	Oxidative Stress Induced by Zero-Valent Iron Nanoparticles and Fe(II) in Human Bronchial Epithelial Cells. Environmental Science & Technology, 2009, 43, 4555-4560.	10.0	194
5	The role of indirect photochemical degradation in the environmental fate of pesticides: a review. Environmental Sciences: Processes and Impacts, 2014, 16, 628.	3.5	192
6	Polyoxometalate-Enhanced Oxidation of Organic Compounds by Nanoparticulate Zero-Valent Iron and Ferrous Ion in the Presence of Oxygen. Environmental Science & Technology, 2008, 42, 4921-4926.	10.0	168
7	Molecular Composition and Photochemical Reactivity of Size-Fractionated Dissolved Organic Matter. Environmental Science & Technology, 2017, 51, 2113-2123.	10.0	163
8	The Impact of pH and Irradiation Wavelength on the Production of Reactive Oxidants during Chlorine Photolysis. Environmental Science & Technology, 2019, 53, 4450-4459.	10.0	145
9	The effect of advanced secondary municipal wastewater treatment on the molecular composition of dissolved organic matter. Water Research, 2017, 122, 42-52.	11.3	141
10	Emerging investigators series: the efficacy of chlorine photolysis as an advanced oxidation process for drinking water treatment. Environmental Science: Water Research and Technology, 2016, 2, 565-579.	2.4	139
11	The Role of Dissolved Organic Matter Composition in Determining Photochemical Reactivity at the Molecular Level. Environmental Science & Technology, 2019, 53, 11725-11734.	10.0	123
12	Relationships Between Dissolved Organic Matter Composition and Photochemistry in Lakes of Diverse Trophic Status. Environmental Science & Technology, 2017, 51, 9624-9632.	10.0	115
13	An international laboratory comparison of dissolved organic matter composition by high resolution mass spectrometry: Are we getting the same answer?. Limnology and Oceanography: Methods, 2020, 18, 235-258.	2.0	109
14	Photosensitized Amino Acid Degradation in the Presence of Riboflavin and Its Derivatives. Environmental Science & Technology, 2011, 45, 5230-5237.	10.0	108
15	Low Molecular Weight Components in an Aquatic Humic Substance As Characterized by Membrane Dialysis and Orbitrap Mass Spectrometry. Environmental Science & Technology, 2012, 46, 9350-9359.	10.0	93
16	Molecular-Level Transformation of Dissolved Organic Matter during Oxidation by Ozone and Hydroxyl Radical. Environmental Science & Technology, 2020, 54, 10351-10360.	10.0	93
17	Structural Transformation of MnO ₂ during the Oxidation of Bisphenol A. Environmental Science & Technology, 2017, 51, 6053-6062.	10.0	86
18	Speeding up solar disinfection (SODIS): effects of hydrogen peroxide, temperature, pH, and copper plus ascorbate on the photoinactivation of E. coli. Journal of Water and Health, 2008, 6, 35-51.	2.6	73

#	Article	IF	CITATIONS
19	Role of Reactive Halogen Species in Disinfection Byproduct Formation during Chlorine Photolysis. Environmental Science & Technology, 2020, 54, 9629-9639.	10.0	67
20	Enhanced Indirect Photochemical Transformation of Histidine and Histamine through Association with Chromophoric Dissolved Organic Matter. Environmental Science & Technology, 2015, 49, 5511-5519.	10.0	51
21	Chlorinated Byproduct Formation during the Electrochemical Advanced Oxidation Process at Magnéli Phase Ti ₄ O ₇ Electrodes. Environmental Science & Technology, 2020, 54, 12673-12683.	10.0	49
22	Longâ€ŧerm trends and synchrony in dissolved organic matter characteristics in Wisconsin, USA, lakes: Quality, not quantity, is highly sensitive to climate. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 546-561.	3.0	45
23	Direct Photolysis Rates and Transformation Pathways of the Lampricides TFM and Niclosamide in Simulated Sunlight. Environmental Science & Technology, 2016, 50, 9998-10006.	10.0	44
24	Large Uncertainty in Estimating <i>p</i> CO ₂ From Carbonate Equilibria in Lakes. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 2909-2924.	3.0	39
25	Evolution of N-Containing Compounds during Hydrothermal Liquefaction of Sewage Sludge. ACS Sustainable Chemistry and Engineering, 2020, 8, 18303-18313.	6.7	39
26	Selective Reactivity and Oxidation of Dissolved Organic Matter by Manganese Oxides. Environmental Science & Technology, 2021, 55, 12084-12094.	10.0	36
27	The effect of probe choice and solution conditions on the apparent photoreactivity of dissolved organic matter. Environmental Sciences: Processes and Impacts, 2017, 19, 1040-1050.	3.5	35
28	Spatial and temporal variability of perfluoroalkyl substances in the Laurentian Great Lakes. Environmental Sciences: Processes and Impacts, 2019, 21, 1816-1834.	3.5	28
29	Tributary Loading and Sediment Desorption as Sources of PFAS to Receiving Waters. ACS ES&T Water, 2022, 2, 436-445.	4.6	26
30	Trace Element Removal in Distributed Drinking Water Treatment Systems by Cathodic H ₂ O ₂ Production and UV Photolysis. Environmental Science & Technology, 2018, 52, 195-204.	10.0	22
31	Potential changes to the biology and challenges to the management of invasive sea lamprey <i>Petromyzon marinus</i> in the Laurentian Great Lakes due to climate change. Global Change Biology, 2020, 26, 1118-1137.	9.5	22
32	Molecular-Level Insights into the Formation of Traditional and Novel Halogenated Disinfection Byproducts. ACS ES&T Water, 2021, 1, 1966-1974.	4.6	20
33	Comment on "Oxidation of Sulfoxides and Arsenic(III) in Corrosion of Nanoscale Zero Valent Iron by Oxygen: Evidence against Ferryl Ions (Fe(IV)) as Active Intermediates in Fenton Reactionâ€. Environmental Science & Technology, 2011, 45, 3177-3178.	10.0	15
34	A field analysis of lampricide photodegradation in Great Lakes tributaries. Environmental Sciences: Processes and Impacts, 2017, 19, 891-900.	3.5	15
35	Impact of bisphenol A influent concentration and reaction time on MnO ₂ transformation in a stirred flow reactor. Environmental Sciences: Processes and Impacts, 2019, 21, 19-27.	3.5	15
36	Organic structure and solid characteristics determine reactivity of phenolic compounds with synthetic and reclaimed manganese oxides. Environmental Science: Water Research and Technology, 2020, 6, 540-553.	2.4	14

CHRISTINA K REMUCAL

#	Article	IF	CITATIONS
37	Indirect photodegradation of the lampricides TFM and niclosamide. Environmental Sciences: Processes and Impacts, 2017, 19, 1028-1039.	3.5	13
38	Response to Comment on "Factors Affecting the Yield of Oxidants from the Reaction of Nanoparticulate Zero-Valent Iron and Oxygenâ€: Environmental Science & Technology, 2008, 42, 5378-5378.	10.0	9
39	Spatial and Temporal Variability of Dissolved Organic Matter Molecular Composition in a Stratified Eutrophic Lake. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	8
40	Seasonal and Spatial Variability of Dissolved Carbon Concentration and Composition in Lake Michigan Tributaries. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006449.	3.0	7
41	Identifying the mechanisms of cation inhibition of phenol oxidation by acid birnessite. Journal of Environmental Quality, 2020, 49, 1644-1654.	2.0	5
42	Patterns and trends of organic matter processing and transport: Insights from the US long-term ecological research network. Climate Change Ecology, 2021, 2, 100025.	1.9	3
43	Response to Comment on "Polyoxometalate-Enhanced Oxidation of Organic Compounds by Nanoparticulate Zero-Valent Iron and Ferrous Ion in the Presence of Oxygen― Environmental Science & Technology, 2008, 42, 8169-8169.	10.0	2
44	Assessment of Temperature and Time Following Application as Predictors of Propiconazole Translocation in <i>Agrostis stolonifera</i> . ACS Agricultural Science and Technology, 0, , .	2.3	2