Xiaolin Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9233412/publications.pdf

Version: 2024-02-01

		257101	288905
79	1,801	24	40
papers	citations	h-index	g-index
70	70	70	15.00
79	79	79	1563
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Improving Generalization Capability of Multiorgan Segmentation Models Using Dual-Energy CT. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6, 79-86.	2.7	2
2	A Generalized Framework for Edge-Preserving and Structure-Preserving Image Smoothing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44, 6631-6648.	9.7	39
3	Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44, 7128-7148.	9.7	33
4	Towards a Unified Quadrature Framework for Large-Scale Kernel Machines. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44, 7975-7988.	9.7	2
5	Relevance attack on detectors. Pattern Recognition, 2022, 124, 108491.	5.1	8
6	Unsupervised Image Restoration With Quality-Task-Perception Loss. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32, 5736-5747.	5.6	11
7	Disparity-constrained stereo endoscopic image super-resolution. International Journal of Computer Assisted Radiology and Surgery, 2022, 17, 867-875.	1.7	4
8	One-Shot Distributed Generalized Eigenvalue Problem (DGEP): Concept, Algorithm and Experiments. Applied Sciences (Switzerland), 2022, 12, 5128.	1.3	0
9	Toward Robust Histology-Prior Embedding for Endomicroscopy Image Classification. IEEE Transactions on Medical Imaging, 2022, 41, 3242-3252.	5.4	O
10	Piecewise linear neural networks and deep learning. Nature Reviews Methods Primers, 2022, 2, .	11.8	11
11	Hierarchical Superpixel Segmentation by Parallel CRTrees Labeling. IEEE Transactions on Image Processing, 2022, 31, 4719-4732.	6.0	4
12	One-shot Distributed Algorithm for Generalized Eigenvalue Problem. , 2022, , .		0
13	DFR-ST: Discriminative feature representation with spatio-temporal cues for vehicle re-identification. Pattern Recognition, 2022, 131, 108887.	5.1	6
14	Mixed-precision quantized neural networks with progressively decreasing bitwidth. Pattern Recognition, 2021, 111, 107647.	5.1	21
15	Adversarial Attack Type I: Cheat Classifiers by Significant Changes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43, 1100-1109.	9.7	14
16	Edge-Aware Graph Attention Network for Ratio of Edge-User Estimation in Mobile Networks. , 2021, , .		1
17	One-Shot Distributed Algorithm for PCA With RBF Kernels. IEEE Signal Processing Letters, 2021, 28, 1465-1469.	2.1	1
18	Colonoscopic Image Synthesis For Polyp Detector Enhancement Via Gan And Adversarial Training. , 2021, , .		6

#	Article	IF	CITATIONS
19	Analysis of regularized least-squares in reproducing kernel KreÄn spaces. Machine Learning, 2021, 110, 1145-1173.	3.4	4
20	Learning Tubule-Sensitive CNNs for Pulmonary Airway and Artery-Vein Segmentation in CT. IEEE Transactions on Medical Imaging, 2021, 40, 1603-1617.	5.4	33
21	Towards Unbiased Random Features with Lower Variance For Stationary Indefinite Kernels., 2021,,.		1
22	Group-sparsity-enforcing fault discrimination and estimation with dynamic process data. Journal of Process Control, 2021, 105, 236-249.	1.7	5
23	ADVMIX: Data Augmentation for Accurate Scene Text Spotting. , 2021, , .		0
24	Embedding Bilateral Filter in Least Squares for Efficient Edge-Preserving Image Smoothing. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30, 23-35.	5.6	40
25	A Double-Variational Bayesian Framework in Random Fourier Features for Indefinite Kernels. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 2965-2979.	7.2	7
26	Toward Making Unsupervised Graph Hashing Discriminative. IEEE Transactions on Multimedia, 2020, 22, 760-774.	5.2	6
27	Online Robust Principal Component Analysis With Change Point Detection. IEEE Transactions on Multimedia, 2020, 22, 59-68.	5.2	16
28	Type I Attack For Generative Models. , 2020, , .		4
28	Type I Attack For Generative Models., 2020, , . Universal Adversarial Perturbation Generated by Attacking Layer-wise Relevance Propagation., 2020, , .		0
		4.0	
29	Universal Adversarial Perturbation Generated by Attacking Layer-wise Relevance Propagation. , 2020, , . Adaptive Temporal-Frequency Network for Time-Series Forecasting. IEEE Transactions on Knowledge	4.0	0
30	Universal Adversarial Perturbation Generated by Attacking Layer-wise Relevance Propagation., 2020,,. Adaptive Temporal-Frequency Network for Time-Series Forecasting. IEEE Transactions on Knowledge and Data Engineering, 2020,, 1-1. Universal Adversarial Attack on Attention and the Resulting Dataset DAmageNet. IEEE Transactions on		7
29 30 31	Universal Adversarial Perturbation Generated by Attacking Layer-wise Relevance Propagation., 2020,,. Adaptive Temporal-Frequency Network for Time-Series Forecasting. IEEE Transactions on Knowledge and Data Engineering, 2020,, 1-1. Universal Adversarial Attack on Attention and the Resulting Dataset DAmageNet. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, PP, 1-1. Learning in-place residual homogeneity for single image detail enhancement. Journal of Electronic	9.7	0 7 34
29 30 31 32	Universal Adversarial Perturbation Generated by Attacking Layer-wise Relevance Propagation., 2020,,. Adaptive Temporal-Frequency Network for Time-Series Forecasting. IEEE Transactions on Knowledge and Data Engineering, 2020, , 1-1. Universal Adversarial Attack on Attention and the Resulting Dataset DAmageNet. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, PP, 1-1. Learning in-place residual homogeneity for single image detail enhancement. Journal of Electronic Imaging, 2020, 29, 1.	9.7 0.5	0 7 34 5
29 30 31 32	Universal Adversarial Perturbation Generated by Attacking Layer-wise Relevance Propagation., 2020,,. Adaptive Temporal-Frequency Network for Time-Series Forecasting. IEEE Transactions on Knowledge and Data Engineering, 2020,, 1-1. Universal Adversarial Attack on Attention and the Resulting Dataset DAmageNet. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, PP, 1-1. Learning in-place residual homogeneity for single image detail enhancement. Journal of Electronic Imaging, 2020, 29, 1. Indefinite Kernel Logistic Regression With Concave-Inexact-Convex Procedure. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30, 765-776. A deep learning based pipeline for optical coherence tomography angiography. Journal of	9.7 0.5 7.2	 0 7 34 5 13

#	Article	IF	CITATIONS
37	Virtual cleaning and unwrapping of non-invasively digitized soiled bamboo scrolls. Scientific Reports, 2019, 9, 2311.	1.6	5
38	Sparse Slow Feature Analysis for Enhanced Control Monitoring and Fault Isolation. , 2019, , .		1
39	Generalized grouped contributions for hierarchical fault diagnosis with group Lasso. Control Engineering Practice, 2019, 93, 104193.	3.2	25
40	Pulmonary nodule segmentation with CT sample synthesis using adversarial networks. Medical Physics, 2019, 46, 1218-1229.	1.6	41
41	A learningâ€based material decomposition pipeline for multiâ€energy xâ€ray imaging. Medical Physics, 2019, 46, 689-703.	1.6	24
42	AirwayNet: A Voxel-Connectivity Aware Approach for Accurate Airway Segmentation Using Convolutional Neural Networks. Lecture Notes in Computer Science, 2019, , 212-220.	1.0	32
43	Data Consistent Artifact Reduction for Limited Angle Tomography with Deep Learning Prior. Lecture Notes in Computer Science, 2019, , 101-112.	1.0	20
44	Indefinite kernel spectral learning. Pattern Recognition, 2018, 78, 144-153.	5.1	7
45	Material Decomposition Using Ensemble Learning for Spectral X-ray Imaging. IEEE Transactions on Radiation and Plasma Medical Sciences, 2018, 2, 194-204.	2.7	14
46	Modified Sparse Linear-Discriminant Analysis via Nonconvex Penalties. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 4957-4966.	7.2	14
47	Scale-Space Anisotropic Total Variation for Limited Angle Tomography. IEEE Transactions on Radiation and Plasma Medical Sciences, 2018, 2, 307-314.	2.7	29
48	Multi-task classification with sequential instances and tasks. Signal Processing: Image Communication, 2018, 64, 59-67.	1.8	6
49	Robust Visual Tracking Revisited: From Correlation Filter to Template Matching. IEEE Transactions on Image Processing, 2018, 27, 2777-2790.	6.0	60
50	Classification With Truncated & lt; inline-formula & gt; & lt; tex-math notation="LaTeX" & gt; \$ ell _{1}\$ & lt; /tex-math & gt; & lt; /inline-formula & gt; Distance Kernel. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 2025-2030.	7.2	15
51	Nonconvex penalties with analytical solutions for one-bit compressive sensing. Signal Processing, 2018, 144, 341-351.	2.1	21
52	Discrete Locally-Linear Preserving Hashing. , 2018, , .		1
53	Fast Signal Recovery From Saturated Measurements by Linear Loss and Nonconvex Penalties. IEEE Signal Processing Letters, 2018, 25, 1374-1378.	2.1	4
54	Pinball loss minimization for one-bit compressive sensing: Convex models and algorithms. Neurocomputing, 2018, 314, 275-283.	3 . 5	9

#	Article	IF	Citations
55	Non-destructive Digitization of Soiled Historical Chinese Bamboo Scrolls. , 2018, , .		3
56	Multi-modal self-paced learning for image classification. Neurocomputing, 2018, 309, 134-144.	3.5	19
57	Dynamic 2-D/3-D Rigid Registration Framework Using Point-To-Plane Correspondence Model. IEEE Transactions on Medical Imaging, 2017, 36, 1939-1954.	5.4	24
58	Hybrid CS-DMRI: Periodic Time-Variant Subsampling and Omnidirectional Total Variation Based Reconstruction. IEEE Transactions on Medical Imaging, 2017, 36, 2148-2159.	5.4	25
59	Restoration of missing data in limited angle tomography based on Helgason–Ludwig consistency conditions. Biomedical Physics and Engineering Express, 2017, 3, 035015.	0.6	26
60	Data-driven robust optimization based on kernel learning. Computers and Chemical Engineering, 2017, 106, 464-479.	2.0	136
61	Efficient and Robust Corner Detectors Based on Second-Order Difference of Contour. IEEE Signal Processing Letters, 2017, 24, 1393-1397.	2.1	17
62	Robust kernel canonical correlation analysis with applications to information retrieval. Engineering Applications of Artificial Intelligence, 2017, 64, 33-42.	4.3	7
63	Adaptive block coordinate DIRECT algorithm. Journal of Global Optimization, 2017, 69, 797-822.	1.1	5
64	Indefinite kernels in least squares support vector machines and principal component analysis. Applied and Computational Harmonic Analysis, 2017, 43, 162-172.	1.1	34
65	Self-paced least square semi-coupled dictionary learning for person re-identification. , 2017, , .		3
66	Robust Kernel Approximation for Classification. Lecture Notes in Computer Science, 2017, , 289-296.	1.0	1
67	Robust Support Vector Machines for Classification with Nonconvex and Smooth Losses. Neural Computation, 2016, 28, 1217-1247.	1.3	29
68	Coordinate Descent Algorithm for Ramp Loss Linear Programming Support Vector Machines. Neural Processing Letters, 2016, 43, 887-903.	2.0	5
69	Robust Multiframe Super-Resolution Employing Iteratively Re-Weighted Minimization. IEEE Transactions on Computational Imaging, 2016, 2, 42-58.	2.6	81
70	Image Quality Analysis of Limited Angle Tomography Using the Shift-Variant Data Loss Model. Informatik Aktuell, 2016, , 277-282.	0.4	4
71	Concurrent monitoring of operating condition deviations and process dynamics anomalies with slow feature analysis. AICHE Journal, 2015, 61, 3666-3682.	1.8	217
72	Enhancing dynamic soft sensors based on DPLS: A temporal smoothness regularization approach. Journal of Process Control, 2015, 28, 17-26.	1.7	60

XIAOLIN HUANG

#	Article	IF	CITATION
73	Signal recovery for jointly sparse vectors with different sensing matrices. Signal Processing, 2015, 108, 451-458.	2.1	9
74	Two-level â,, "1 minimization for compressed sensing. Signal Processing, 2015, 108, 459-475.	2.1	34
75	Support Vector Machine Classifier With Pinball Loss. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36, 984-997.	9.7	214
76	Quantile regression with \hat{a} , " $1\hat{a}$ egularization and Gaussian kernels. Advances in Computational Mathematics, 2014, 40, 517-551.	0.8	8
77	Support vector machines with piecewise linear feature mapping. Neurocomputing, 2013, 117, 118-127.	3.5	30
78	Fixed-size Pegasos for hinge and pinball loss SVM. , 2013, , .		16
79	Configuration of Continuous Piecewise-Linear Neural Networks. IEEE Transactions on Neural Networks, 2008, 19, 1431-1445.	4.8	27