List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9233101/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High Performance Shortwave Infrared Organic Photodetectors Adopting Thiadiazole Quinoxalineâ€Based Copolymers. Advanced Optical Materials, 2022, 10, .	3.6	13
2	Highly Responsive and Thermally Reliable Nearâ€Infrared Organic Photodiodes Utilizing Naphthalocyanine Molecules Tuned with Axial Ligands. Advanced Optical Materials, 2021, 9, 2001682.	3.6	13
3	Organic Upconversion Imager with Dual Electronic and Optical Readouts for Shortwave Infrared Light Detection. Advanced Functional Materials, 2021, 31, 2100565.	7.8	33
4	Solution-processable infrared photodetectors: Materials, device physics, and applications. Materials Science and Engineering Reports, 2021, 146, 100643.	14.8	49
5	Green-Light-Selective Organic Photodiodes with High Detectivity for CMOS Color Image Sensors. ACS Applied Materials & Interfaces, 2020, 12, 51688-51698.	4.0	19
6	Noise and detectivity limits in organic shortwave infrared photodiodes with low disorder. Npj Flexible Electronics, 2020, 4, .	5.1	59
7	Green-light-selective organic photodiodes for full-color imaging. Optics Express, 2019, 27, 25410.	1.7	19
8	Bi-layered metal-oxide thin films processed at low-temperature for the encapsulation of highly stable organic photo-diode. Organic Electronics, 2017, 41, 259-265.	1.4	10
9	Energy Cap between Photoluminescence and Electroluminescence as Recombination Indicator in Organic Small-Molecule Photodiodes. Journal of Physical Chemistry C, 2016, 120, 10176-10184.	1.5	11
10	Narrow-Band Organic Photodiodes for High-Resolution Imaging. ACS Applied Materials & Interfaces, 2016, 8, 26143-26151.	4.0	59
11	Dipolar donor–acceptor molecules in the cyanine limit for high efficiency green-light-selective organic photodiodes. Journal of Materials Chemistry C, 2016, 4, 1117-1125.	2.7	40
12	Low dark current inverted organic photodetectors employing MoO x :Al cathode interlayer. Organic Electronics, 2015, 24, 176-181.	1.4	21
13	Organic-on-silicon complementary metal–oxide–semiconductor colour image sensors. Scientific Reports, 2015, 5, 7708.	1.6	94
14	Dynamic Characterization of Green-Sensitive Organic Photodetectors Using Nonfullerene Small Molecules: Frequency Response Based on the Molecular Structure. Journal of Physical Chemistry C, 2014, 118, 13424-13431.	1.5	42
15	A high performance green-sensitive organic photodiode comprising a bulk heterojunction of dimethyl-quinacridone and dicyanovinyl terthiophene. Journal of Materials Chemistry C, 2013, 1, 2666.	2.7	40
16	Green-Sensitive Organic Photodetectors with High Sensitivity and Spectral Selectivity Using Subphthalocyanine Derivatives. ACS Applied Materials & Interfaces, 2013, 5, 13089-13095.	4.0	85
17	Investigation of a Conjugated Polyelectrolyte Interlayer for Inverted Polymer:Fullerene Solar Cells. Advanced Energy Materials, 2013, 3, 718-723.	10.2	92
18	Low dark current small molecule organic photodetectors with selective response to green light. Applied Physics Letters, 2013, 103, 043305.	1.5	60

#	Article	IF	CITATIONS
19	Spin-coated ultrathin poly(vinylidene fluoride-co-trifluoroethylene) films for flexible and transparent electronics. Journal of Materials Chemistry, 2011, 21, 5057.	6.7	25
20	Reduced Graphene Oxide Electrodes for Large Area Organic Electronics. Advanced Materials, 2011, 23, 1558-1562.	11.1	92
21	Efficient Organic Solar Cells with Solutionâ€Processed Silver Nanowire Electrodes. Advanced Materials, 2011, 23, 4371-4375.	11.1	513
22	Flexible multilayer inverted polymer light-emitting diodes with a gravure contact printed Cs2CO3 electron injection layer. Applied Physics Letters, 2011, 98, 103306.	1.5	18
23	Gravure contact printing of flexible, high-performance polymer light emitting diodes for large-area displays and lighting. Materials Research Society Symposia Proceedings, 2011, 1340, 1.	0.1	1
24	Micron-scale patterning of high conductivity poly(3,4-ethylendioxythiophene):poly(styrenesulfonate) for organic field-effect transistors. Organic Electronics, 2010, 11, 1307-1312.	1.4	33
25	Effect of host organic semiconductors on electrical doping. Organic Electronics, 2010, 11, 486-489.	1.4	57
26	Rapid Patterning of Singleâ€Wall Carbon Nanotubes by Interlayer Lithography. Small, 2010, 6, 2530-2534.	5.2	18
27	Efficient and colour-stable hybrid white organic light-emitting diodes utilizing electron–hole balanced spacers. Journal Physics D: Applied Physics, 2010, 43, 405102.	1.3	16
28	Estimation of the mean emission zone in phosphorescent organic light-emitting diodes with a thin emitting layer. Optics Express, 2010, 18, 16715.	1.7	6
29	High efficiency p-i-n top-emitting organic light-emitting diodes with a nearly Lambertian emission pattern. Journal of Applied Physics, 2009, 106, .	1.1	25
30	Electronic and chemical properties of cathode structures using 4,7-diphenyl-1,10-phenanthroline doped with rubidium carbonate as electron injection layers. Journal of Applied Physics, 2009, 105, 113714.	1.1	32
31	Rubidium-Carbonate-Doped 4,7-Diphenyl-1,10-phenanthroline Electron Transporting Layer for High-Efficiency p-i-n Organic Light Emitting Diodes. Electrochemical and Solid-State Letters, 2009, 12, J8.	2.2	40
32	Electrical doping for high performance organic light emitting diodes. , 2009, , .		0
33	Highly efficient orange organic light-emitting diodes using a novel iridium complex with imide group-containing ligands. Journal of Materials Chemistry, 2009, 19, 8824.	6.7	47
34	Effectiveness of p-dopants in an organic hole transporting material. Applied Physics Letters, 2009, 94, .	1.5	88
35	Pâ€161: Effectiveness of <i>p</i> â€Dopants in an Organic Hole Transporting Material. Digest of Technical Papers SID International Symposium, 2009, 40, 1719-1721.	0.1	2
36	35.1: <i>Invited Paper</i> : Electrical Doping for High Performance Organic Light Emitting Diodes. Digest of Technical Papers SID International Symposium, 2009, 40, 491-494.	0.1	2

#	Article	IF	CITATIONS
37	High performance top-emitting organic light-emitting diodes with copper iodide-doped hole injection layer. Organic Electronics, 2008, 9, 805-808.	1.4	63
38	Characteristics of Ni-Doped IZO Layers Grown on IZO Anode for Enhancing Hole Injection in OLEDs. Journal of the Electrochemical Society, 2008, 155, J340.	1.3	8
39	Highly efficient tandem p-i-n organic light-emitting diodes adopting a low temperature evaporated rhenium oxide interconnecting layer. Applied Physics Letters, 2008, 93, .	1.5	77
40	Investigations of electron-injection mechanisms and interfacial chemical reactions of Bphen doped with rubidium carbonate in OLEDs. , 2008, , .		3
41	Low driving voltage and high stability organic light-emitting diodes with rhenium oxide-doped hole transporting layer. Applied Physics Letters, 2007, 91, 011113.	1.5	138
42	Morphology- and Orientation-Controlled Gallium Arsenide Nanowires on Silicon Substrates. Nano Letters, 2007, 7, 39-44.	4.5	99
43	Enhancement of the light output of GaN-based light-emitting diodes with surface-patterned ITO electrodes by maskless wet-etching. Solid-State Electronics, 2007, 51, 793-796.	0.8	51
44	Formation mechanism of cerium oxide-doped indium oxide/Ag Ohmic contacts on p-type GaN. Applied Physics Letters, 2006, 89, 262115.	1.5	15
45	Recent development of patterned structure light-emitting diodes. , 2005, , .		1
46	Formation of High-Quality Ohmic Contacts to p-GaN for Flip-Chip LEDs Using Agâ^•TiN[sub x]â^•Al. Electrochemical and Solid-State Letters, 2005, 8, G150.	2.2	5
47	High transparency of Agâ^•Zn–Ni solid–solution ohmic contacts for GaN-based ultraviolet light-emitting diodes. Applied Physics Letters, 2005, 86, 102102.	1.5	4
48	Light-output enhancement of GaN-based light-emitting diodes by using hole-patterned transparent indium tin oxide electrodes. Journal of Applied Physics, 2005, 98, 076107.	1.1	33
49	Low-Resistance and Reflective Ni/Rh and Ni/Au/Rh Contacts to p-GaN for Flip-Chip LEDs. Electrochemical and Solid-State Letters, 2005, 8, G17.	2.2	6
50	Improvement of the luminous intensity of light-emitting diodes by using highly transparent Ag-indium tin oxide p-type ohmic contacts. IEEE Photonics Technology Letters, 2005, 17, 291-293.	1.3	57
51	Low resistance and transparent Ni–La solid solution/Au ohmic contacts to p-type GaN. Applied Physics Letters, 2004, 84, 1504-1506.	1.5	13
52	Low resistance Ni–Zn solid solution/Pd ohmic contacts to p-type GaN. Semiconductor Science and Technology, 2004, 19, 669-672.	1.0	6
53	High-Quality Cu-Ni Solid Solution/Ag Ohmic Contacts for Flip-Chip Light-Emitting Diodes. Electrochemical and Solid-State Letters, 2004, 7, G210.	2.2	11
54	Formation of Nonalloyed Low Resistance Ni/Au Ohmic Contacts to p-Type GaN Using Au Nanodots [Electrochemical and Solid-State Letters, 7, G179 (2004)]. Electrochemical and Solid-State Letters, 2004, 7, L1.	2.2	1

#	Article	IF	CITATIONS
55	Low Resistance Ni-Mg Solid Solution/Pt Ohmic Contacts to p-Type GaN. Electrochemical and Solid-State Letters, 2004, 7, G65.	2.2	0
56	Low Resistance and Highly Reflective Sb-Doped SnO[sub 2]/Ag Ohmic Contacts to p-Type GaN for Flip-Chip LEDs. Electrochemical and Solid-State Letters, 2004, 7, G219.	2.2	13
57	Low resistance and highly reflective Cu–Ni solid solution/Ag ohmic contacts to p-GaN for flip-chip light emitting diodes. Physica Status Solidi A, 2004, 201, 2823-2826.	1.7	4
58	Nano-dot addition effect on the electrical properties of Ni contacts to p-type GaN. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 2524-2527.	0.8	10
59	GaN-based light-emitting diodes with Ni–Mg solid solution/Au p-type ohmic contact. Solid-State Electronics, 2004, 48, 1597-1600.	0.8	6
60	Low Resistance and Reflective Mg-Doped Indium Oxide–Ag Ohmic Contacts for Flip-Chip Light-Emitting Diodes. IEEE Photonics Technology Letters, 2004, 16, 1450-1452.	1.3	65
61	Low-resistance and transparent ohmic contacts to p-type GaN using Zn–Ni solid solution/Au scheme. Applied Physics Letters, 2004, 84, 4663-4665.	1.5	16
62	Formation of Nonalloyed Low Resistance Ni/Au Ohmic Contacts to p-Type GaN Using Au Nanodots. Electrochemical and Solid-State Letters, 2004, 7, G179.	2.2	26
63	High-quality nonalloyed rhodium-based ohmic contacts to p-type GaN. Applied Physics Letters, 2003, 83, 2372-2374.	1.5	30
64	Low-resistance and highly-reflective Zn–Ni solid solution/Ag ohmic contacts for flip-chip light-emitting diodes. Applied Physics Letters, 2003, 83, 4990-4992.	1.5	56
65	Formation of low resistance and transparent ohmic contacts to p-type GaN using Ni–Mg solid solution. Applied Physics Letters, 2003, 83, 3513-3515.	1.5	59
66	Amount of retained austenite at room temperature after reverse transformation of martensite to austenite in an Fe–13%Cr–7%Ni–3%Si martensitic stainless steel. Scripta Materialia, 2001, 45, 767-772.	2.6	152
67	Formation of high quality ohmic contacts to p-GaN using metal/transparent conducting oxides. , 0, , .		0