Cédric Jacquard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9232931/publications.pdf

Version: 2024-02-01

430874 276875 2,619 41 18 41 citations g-index h-index papers 43 43 43 3586 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiology and Molecular Biology Reviews, 2016, 80, 1-43.	6.6	1,395
2	Cyclic lipopeptides from <i><scp>B</scp>acillus subtilis</i> activate distinct patterns of defence responses in grapevine. Molecular Plant Pathology, 2015, 16, 177-187.	4.2	133
3	Cross-talk between environmental stresses and plant metabolism during reproductive organ abscission. Journal of Experimental Botany, 2015, 66, 1707-1719.	4.8	111
4	Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana. Frontiers in Plant Science, 2015, 6, 810.	3.6	99
5	Burkholderia phytofirmans PsJN Confers Grapevine Resistance against Botrytis cinerea via a Direct Antimicrobial Effect Combined with a Better Resource Mobilization. Frontiers in Plant Science, 2016, 7, 1236.	3.6	86
6	Paraburkholderia phytofirmans PsJN-Plants Interaction: From Perception to the Induced Mechanisms. Frontiers in Microbiology, 2018, 9, 2093.	3.5	69
7	Impacts of Paraburkholderia phytofirmans Strain PsJN on Tomato (Lycopersicon esculentum L.) Under High Temperature. Frontiers in Plant Science, 2018, 9, 1397.	3.6	56
8	Pollen vacuoles and their significance. Planta, 2011, 234, 217-227.	3.2	50
9	Influence of copper sulfate on anther culture in barley (Hordeum vulgare L.). Plant Science, 2002, 162, 843-847.	3.6	49
10	Impact of two ionic liquids, 1-ethyl-3-methylimidazolium acetate and 1-ethyl-3-methylimidazolium methylphosphonate, on Saccharomyces cerevisiae: metabolic, physiologic, and morphological investigations. Biotechnology for Biofuels, 2015, 8, 17.	6.2	48
11	Microspore embryogenesis and programmed cell death in barley: effects of copper on albinism in recalcitrant cultivars. Plant Cell Reports, 2009, 28, 1329-1339.	5.6	43
12	Microspore embryogenesis in barley: anther pre-treatment stimulates plant defence gene expression. Planta, 2009, 229, 393-402.	3.2	40
13	Plasticity in Cell Division Patterns and Auxin Transport Dependency during in Vitro Embryogenesis in <i>Brassica napus</i> ÂÂ. Plant Cell, 2014, 26, 2568-2581.	6.6	35
14	Plasmopara viticola the Causal Agent of Downy Mildew of Grapevine: From Its Taxonomy to Disease Management. Frontiers in Microbiology, 2022, 13, .	3.5	29
15	Synthetic Mono-Rhamnolipids Display Direct Antifungal Effects and Trigger an Innate Immune Response in Tomato against Botrytis Cinerea. Molecules, 2020, 25, 3108.	3.8	27
16	<i>Pseudomonas knackmussii</i> MLR6, a rhizospheric strain isolated from halophyte, enhances salt tolerance in <i>Arabidopsis thaliana</i> Iournal of Applied Microbiology, 2018, 125, 1836-1851.	3.1	26
17	Pyrenophora teres: Taxonomy, Morphology, Interaction With Barley, and Mode of Control. Frontiers in Plant Science, 2021, 12, 614951.	3.6	22
18	Kluyveromyces marxianus, an Attractive Yeast for Ethanolic Fermentation in the Presence of Imidazolium Ionic Liquids. International Journal of Molecular Sciences, 2018, 19, 887.	4.1	20

#	Article	IF	CITATIONS
19	Adaptation of Grapevine Flowers to Cold Involves Different Mechanisms Depending on Stress Intensity. PLoS ONE, 2012, 7, e46976.	2.5	20
20	Resveratrol and cyclodextrins, an easy alliance: Applications in nanomedicine, green chemistry and biotechnology. Biotechnology Advances, 2021, 53, 107844.	11.7	20
21	The mode of action of plant associated Burkholderia against grey mould disease in grapevine revealed through traits and genomic analyses. Scientific Reports, 2020, 10, 19393.	3.3	17
22	Distinct regulation in inflorescence carbohydrate metabolism according to grapevine cultivars during floral development. Physiologia Plantarum, 2015, 154, 447-467.	5.2	15
23	Leaf vs. inflorescence: differences in photosynthetic activity of grapevine. Photosynthetica, 2017, 55, 58-68.	1.7	15
24	Pseudomonas Lipopeptide-Mediated Biocontrol: Chemotaxonomy and Biological Activity. Molecules, 2022, 27, 372.	3.8	14
25	Impact of Paraburkholderia phytofirmans PsJN on Grapevine Phenolic Metabolism. International Journal of Molecular Sciences, 2019, 20, 5775.	4.1	13
26	Genotypic Variation of Nitrogen Use Efficiency and Amino Acid Metabolism in Barley. Frontiers in Plant Science, 2021, 12, 807798.	3.6	13
27	Genome sequencing and traits analysis of Burkholderia strains reveal a promising biocontrol effect against grey mould disease in grapevine (Vitis vinifera L.). World Journal of Microbiology and Biotechnology, 2019, 35, 40.	3.6	12
28	Isolation and Identification of Lipopeptide-Producing Bacillus velezensis Strains from Wheat Phyllosphere with Antifungal Activity against the Wheat Pathogen Zymoseptoria tritici. Agronomy, 2022, 12, 95.	3.0	11
29	Programmed Cell Death and Microspore Embryogenesis. , 2009, , 147-154.		10
30	On a Cold Night: Transcriptomics of Grapevine Flower Unveils Signal Transduction and Impacted Metabolism. International Journal of Molecular Sciences, 2019, 20, 1130.	4.1	9
31	A biological agent modulates the physiology of barley infected with Drechslera teres. Scientific Reports, 2021, 11, 8330.	3.3	9
32	Cold-night responses in grapevine inflorescences. Plant Science, 2015, 239, 115-127.	3.6	8
33	Draft Genome Sequence of Burkholderia reimsis BE51, a Plant-Associated Bacterium Isolated from Agricultural Rhizosphere. Microbiology Resource Announcements, 2018, 7, .	0.6	8
34	Analyses of Lysin-motif Receptor-like Kinase (LysM-RLK) Gene Family in Allotetraploid Brassica napus L. and Its Progenitor Species: An In Silico Study. Cells, 2022, 11, 37.	4.1	8
35	Expression Analysis of Cell Wall-Related Genes in the Plant Pathogenic Fungus Drechslera teres. Genes, 2020, 11, 300.	2.4	7
36	Beneficial Microorganisms to Control the Gray Mold of Grapevine: From Screening to Mechanisms. Microorganisms, 2021, 9, 1386.	3.6	7

CéDRIC JACQUARD

#	Article	IF	CITATIONS
37	Biofilm-Constructing Variants of Paraburkholderia phytofirmans PsJN Outcompete the Wild-Type Form in Free-Living and Static Conditions but Not <i>In Planta</i> . Applied and Environmental Microbiology, 2019, 85, .	3.1	6
38	In Silico Analyses of Autophagy-Related Genes in Rapeseed (Brassica napus L.) under Different Abiotic Stresses and in Various Tissues. Plants, 2020, 9, 1393.	3 . 5	5
39	Gene expression and metabolite analysis in barley inoculated with net blotch fungus and plant growth-promoting rhizobacteria. Plant Physiology and Biochemistry, 2021, 168, 488-500.	5.8	5
40	Draft Genome Sequence of Plant Growth-Promoting Burkholderia sp. Strain BE12, Isolated from the Rhizosphere of Maize. Genome Announcements, 2018, 6, .	0.8	4
41	Modulation of the Activity of Enzymes Involved in Carbohydrate Metabolism during Flower Development of Grapevine (Vitis Vinifera L.). Open Journal of Plant Science, 2016, 1, 010-017.	0.2	3