Patrick M Munro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9232365/publications.pdf

Version: 2024-02-01

414414 394421 1,145 33 19 32 citations h-index g-index papers 33 33 33 1552 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Escherichia coli Rho GTPase-activating toxin CNF1 mediates NLRP3 inflammasome activation via p21-activated kinases-1/2 during bacteraemia in mice. Nature Microbiology, 2021, 6, 401-412.	13.3	46
2	Impact of thermogenesis induced by chronic \hat{l}^2 3-adrenergic receptor agonist treatment on inflammatory and infectious response during bacteremia in mice. PLoS ONE, 2021, 16, e0256768.	2.5	1
3	Modulation of the inflammatory response to LPS by the recruitment and activation of brown and brite adipocytes in mice. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E912-E922.	3.5	6
4	Diet Supplementation in ω3 Polyunsaturated Fatty Acid Favors an Anti-Inflammatory Basal Environment in Mouse Adipose Tissue. Nutrients, 2019, 11, 438.	4.1	18
5	Pseudomonas aeruginosa Exolysin promotes bacterial growth in lungs, alveolar damage and bacterial dissemination. Scientific Reports, 2017, 7, 2120.	3.3	28
6	Immunoadjuvant Properties of the Rho Activating Factor CNF1 in Prophylactic and Curative Vaccination against Leishmania infantum. PLoS ONE, 2016, 11, e0156363.	2.5	9
7	EDIN-B Promotes the Translocation of Staphylococcus aureus to the Bloodstream in the Course of Pneumonia. Toxins, 2015, 7, 4131-4142.	3.4	19
8	The Saccharomyces boulardii CNCM I-745 Strain Shows Protective Effects against the B. anthracis LT Toxin. Toxins, 2015, 7, 4455-4467.	3.4	7
9	Deamidase toxins. , 2015, , 499-514.		1
10	Escherichia coli \hat{l} ±-Hemolysin Counteracts the Anti-Virulence Innate Immune Response Triggered by the Rho GTPase Activating Toxin CNF1 during Bacteremia. PLoS Pathogens, 2015, 11, e1004732.	4.7	51
11	Cherubism allele heterozygosity amplifies microbe-induced inflammatory responses in murine macrophages. Journal of Clinical Investigation, 2015, 125, 1396-1400.	8.2	24
12	Saccharomyces boulardii Modifies Salmonella Typhimurium Traffic and Host Immune Responses along the Intestinal Tract. PLoS ONE, 2014, 9, e103069.	2.5	36
13	Modification of Salmonella Typhimurium Motility by the Probiotic Yeast Strain Saccharomyces boulardii. PLoS ONE, 2012, 7, e33796.	2.5	40
14	cAMP Signaling by Anthrax Edema Toxin Induces Transendothelial Cell Tunnels, which Are Resealed by MIM via Arp2/3-Driven Actin Polymerization. Cell Host and Microbe, 2011, 10, 464-474.	11.0	62
15	The E3ÂUbiquitin-Ligase HACE1 Catalyzes the Ubiquitylation of Active Rac1. Developmental Cell, 2011, 21, 959-965.	7.0	149
16	High prevalence of edin-C encoding RhoA-targeting toxin in clinical isolates of Staphylococcus aureus. European Journal of Clinical Microbiology and Infectious Diseases, 2011, 30, 965-972.	2.9	16
17	Luciferase-Expressing Leishmania infantum Allows the Monitoring of Amastigote Population Size, In Vivo, Ex Vivo and In Vitro. PLoS Neglected Tropical Diseases, 2011, 5, e1323.	3.0	60
18	The <i>Staphylococcus aureus</i> Epidermal Cell Differentiation Inhibitor Toxin Promotes Formation of Infection Foci in a Mouse Model of Bacteremia. Infection and Immunity, 2010, 78, 3404-3411.	2.2	42

#	Article	IF	CITATIONS
19	Injection of <i>Staphylococcus aureus</i> EDIN by the <i>Bacillus anthracis</i> Protective Antigen Machinery Induces Vascular Permeability. Infection and Immunity, 2009, 77, 3596-3601.	2.2	34
20	Intranasal immunization with tetanus toxoid and CNF1 as a new mucosal adjuvant protects BALB/c mice against lethal challenge. Vaccine, 2007, 25, 8702-8706.	3.8	15
21	Specificity of immunomodulator secretion in urinary samples in response to infection by alpha-hemolysin and CNF1 bearing uropathogenic Escherichia coli. Cytokine, 2007, 37, 22-25.	3.2	19
22	Bacteria and the ubiquitin pathway. Current Opinion in Microbiology, 2007, 10, 39-46.	5.1	32
23	Induction of transient macroapertures in endothelial cells through RhoA inhibition by Staphylococcus aureus factors. Journal of Cell Biology, 2006, 173, 809-819.	5. 2	74
24	Induction of transient macroapertures in endothelial cells through RhoA inhibition by Staphylococcus aureus factors. Journal of Experimental Medicine, 2006, 203, i17-i17.	8.5	2
25	The Rho GTPase activators CNF1 and DNT bacterial toxins have mucosal adjuvant properties. Vaccine, 2005, 23, 2551-2556.	3.8	19
26	Activation and Proteasomal Degradation of Rho GTPases by Cytotoxic Necrotizing Factor-1 Elicit a Controlled Inflammatory Response. Journal of Biological Chemistry, 2004, 279, 35849-35857.	3.4	74
27	High Sensitivity of Mouse Neuronal Cells to Tetanus Toxin Requires a GPI-Anchored Protein. Biochemical and Biophysical Research Communications, 2001, 289, 623-629.	2.1	56
28	Toxins from anaerobic bacteria: specificity and molecular mechanisms of action. Current Opinion in Microbiology, 1998, 1, 66-74.	5.1	59
29	Fate of Vibrio cholerae O1 in seawater microcosms. Water Research, 1996, 30, 47-50.	11.3	26
30	The loss of culturability by Escherichia coli cells in seawater depends on availability of phosphate ions and phosphate transport systems. Microbial Ecology, 1993, 26, 29-35.	2.8	7
31	Influence of prior growth conditions on low nutrient response of Escherichia coli in seawater. Canadian Journal of Microbiology, 1989, 35, 379-383.	1.7	46
32	Modification de la structure des enveloppes et du contenu en proteins d'Escherichia coli en survie dans l'eau de mer. Canadian Journal of Microbiology, 1989, 35, 843-849.	1.7	13
33	Influence of salts and sodium chloride on the recovery ofEscherichia coli from seawater. Current Microbiology, 1987, 15, 5-10.	2.2	54