Gennaro Fazio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/923220/publications.pdf

Version: 2024-02-01

136740 182168 2,896 68 32 51 citations h-index g-index papers 71 71 71 2237 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Contrasting effects of genotype and root size on the fungal and bacterial communities associated with apple rootstocks. Horticulture Research, 2022, 9, .	2.9	7
2	Thermotherapy Followed by Shoot Tip Cryotherapy Eradicates Latent Viruses and Apple Hammerhead Viroid from In Vitro Apple Rootstocks. Plants, 2022, 11, 582.	1.6	12
3	Genetics, Breeding, and Genomics of Apple Rootstocks. Compendium of Plant Genomes, 2021, , 105-130.	0.3	5
4	Performance of Semi-dwarf Apple Rootstocks in Two-dimensional Training Systems. Hortscience: A Publication of the American Society for Hortcultural Science, 2021, 56, 234-241.	0.5	5
5	Geneva® Series Rootstocks for Apple Trees Under Extreme Replanting Conditions in Southern Brazil. Frontiers in Plant Science, 2021, 12, 712162.	1.7	9
6	Laccase Directed Lignification Is One of the Major Processes Associated With the Defense Response Against Pythium ultimum Infection in Apple Roots. Frontiers in Plant Science, 2021, 12, 629776.	1.7	12
7	Genomic consequences of apple improvement. Horticulture Research, 2021, 8, 9.	2.9	53
8	I. Mineral nutrient profiles and relationships of â€~Honeycrisp' grown on a genetically diverse set of rootstocks under Western New York climatic conditions. Scientia Horticulturae, 2020, 266, 108477.	1.7	18
9	Long-term Performance of â€~Delicious' Apple Trees Grafted on Geneva® Rootstocks and Trained to Four High-density Systems under New York State Climatic Conditions. Hortscience: A Publication of the American Society for Hortcultural Science, 2020, 55, 1538-1550.	0.5	12
10	II. Horticultural performance of â€~Honeycrisp' grown on a genetically diverse set of rootstocks under Western New York climatic conditions. Scientia Horticulturae, 2019, 257, 108686.	1.7	17
11	Advances in fruit crop propagation in Brazil and worldwide-apple trees. Revista Brasileira De Fruticultura, 2019, 41, .	0.2	6
12	Apple whole genome sequences: recent advances and new prospects. Horticulture Research, 2019, 6, 59.	2.9	77
13	Effect of tree type and rootstock on the long-term performance of  Gala',  Fuji' and  Honeycrisp' trees trained to Tall Spindle under New York State climatic conditions. Scientia Horticulturae, 2019, 246, 506-517.	™ apple 1.7	16
14	Long-term performance of â€ ⁻ Galaâ€ ^{-™} , Fujiâ€ ^{-™} and â€ ⁻ Honeycrispâ€ ^{-™} apple trees grafted on GenevaÂ [®] rootstotrained to four production systems under New York State climatic conditions. Scientia Horticulturae, 2019, 244, 277-293.	ocks and 1.7	35
15	Advances in the development and utilization of fruit tree rootstocks: a case study for apple. Burleigh Dodds Series in Agricultural Science, 2019, , 31-72.	0.1	2
16	Horticultural performance and elemental nutrient concentrations on †Fuji' grafted on apple rootstocks under New York State climatic conditions. Scientia Horticulturae, 2018, 227, 22-37.	1.7	54
17	Effect of scion and graft type on transpiration, hydraulic resistance and xylem hormone profile of apples grafted on Geneva A® 41 and M.9-NICâ,,¢29 rootstocks. Scientia Horticulturae, 2018, 227, 213-222.	1.7	19
18	Genotypic Variation in Apple Rootstock Low Temperature Tolerance During Spring and Fall. Journal of the American Society for Horticultural Science, 2018, 143, 319-332.	0.5	9

#	Article	IF	CITATIONS
19	Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nature Communications, 2017, 8, 249.	5.8	286
20	Effects of apple (Malus×domestica) rootstocks on scion performance and hormone concentration. Scientia Horticulturae, 2017, 225, 96-105.	1.7	46
21	Seeds capture the diversity of genetic resource collections of Malus sieversii maintained in an orchard. Genetic Resources and Crop Evolution, 2017, 64, 1513-1528.	0.8	8
22	Genotyping-by-sequencing markers facilitate the identification of quantitative trait loci controlling resistance to Penicillium expansum in Malus sieversii. PLoS ONE, 2017, 12, e0172949.	1.1	47
23	Genome to Phenome Mapping in Apple Using Historical Data. Plant Genome, 2016, 9, plantgenome2015.11.0113.	1.6	102
24	Where are we now as we merge genomics into plant breeding and what are our limitations? Experiences from RosBREED. Acta Horticulturae, 2016, , 1-6.	0.1	7
25	Transcriptome changes specifically associated with apple (Malus domestica) root defense response during Pythium ultimum infection. Physiological and Molecular Plant Pathology, 2016, 94, 16-26.	1.3	70
26	Apple rootstock resistance to drought. Scientia Horticulturae, 2016, 204, 70-78.	1.7	51
27	Hormone and growth interactions of scions and size-controlling rootstocks of young apple trees. Plant Growth Regulation, 2016, 78, 105-119.	1.8	53
28	Chloroplast heterogeneity and historical admixture within the genus <i>Malus</i> . American Journal of Botany, 2015, 102, 1198-1208.	0.8	36
29	The vulnerability of US apple (Malus) genetic resources. Genetic Resources and Crop Evolution, 2015, 62, 765-794.	0.8	74
30	Effects of Size-Controlling Apple Rootstocks on Growth, Abscisic Acid, and Hydraulic Conductivity of Scion of Different Vigor. International Journal of Fruit Science, 2015, 15, 369-381.	1.2	47
31	Genetic diversity in <i>Malus</i> \tilde{A} — <i>domestica</i> (Rosaceae) through time in response to domestication. American Journal of Botany, 2014, 101, 1770-1779.	0.8	87
32	Mapping in an apple (Malus x domestica) F1 segregating population based on physical clustering of differentially expressed genes. BMC Genomics, 2014, 15, 261.	1.2	12
33	Elucidating the molecular responses of apple rootstock resistant to ARD pathogens: challenges and opportunities for development of genomics-assisted breeding tools. Horticulture Research, 2014, 1, 14043.	2.9	57
34	CHARACTERISTICS AND PERFORMANCE OF FOUR NEW APPLE ROOTSTOCKS FROM THE CORNELL-USDA APPLE ROOTSTOCK BREEDING PROGRAM. Acta Horticulturae, 2014, , 651-656.	0.1	12
35	Transcriptional regulation of ethylene and jasmonate mediated defense response in apple (Malus) Tj ETQq1 1 0.78	34314 rgB 2.9	T ₄ Overlock
36	Dw2, a New Dwarfing Locus in Apple Rootstocks and Its Relationship to Induction of Early Bearing in Apple Scions. Journal of the American Society for Horticultural Science, 2014, 139, 87-98.	0.5	57

#	Article	IF	Citations
37	Diversity Captured in the USDA-ARS National Plant Germplasm System Apple Core Collection. Journal of the American Society for Horticultural Science, 2013, 138, 375-381.	0.5	21
38	Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in Malus †Robusta 5†accessions. BMC Genetics, 2012, 13, 25.	2.7	88
39	Rootstock-regulated gene expression patterns associated with fire blight resistance in apple. BMC Genomics, 2012, 13, 9.	1.2	84
40	A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple. Molecular Genetics and Genomics, 2012, 287, 663-678.	1.0	124
41	EST contig-based SSR linkage maps for MalusÂ×Âdomestica cv Royal Gala and an apple scab resistant accession of M. sieversii, the progenitor species of domestic apple. Molecular Breeding, 2012, 29, 379-397.	1.0	31
42	Identification of "Duplicate―Accessions within the USDA-ARS National Plant Germplasm System Malus Collection. Journal of the American Society for Horticultural Science, 2012, 137, 333-342.	0.5	35
43	Identification of wild apple germplasm (<i>Malus</i> spp.) accessions with resistance to the postharvest decay pathogens <i>Penicillium expansum</i> and <i>Colletotrichum acutatum</i> Plant Breeding, 2011, 130, 481-486.	1.0	64
44	IMPLEMENTATION OF MOLECULAR MARKER TECHNOLOGIES IN THE APPLE ROOTSTOCK BREEDING PROGRAM IN GENEVA - CHALLENGES AND SUCCESSES. Acta Horticulturae, 2011, , 61-68.	0.1	22
45	PERFORMANCE OF GENEVA® ROOTSTOCKS IN ON-FARM TRIALS IN NEW YORK STATE. Acta Horticulturae, 2011, , 249-255.	0.1	23
46	Cold Temperature Tolerance of Trunk and Root Tissues in One- or Two-year-old Apple Rootstocks. Hortscience: A Publication of the American Society for Hortcultural Science, 2011, 46, 1460-1464.	0.5	20
47	MAPPING GENES EXPRESSED PREFERENTIALLY IN APPLE ROOTSTOCKS. Acta Horticulturae, 2011, , 75-80.	0.1	0
48	ROSBREED: ENABLING MARKER-ASSISTED BREEDING IN ROSACEAE. Acta Horticulturae, 2010, , 389-394.	0.1	67
49	Analysis of Malus S-RNase gene diversity based on a comparative study of old and modern apple cultivars and European wild apple. Molecular Breeding, 2010, 26, 693-709.	1.0	37
50	Rootstock-regulated gene expression patterns in apple tree scions. Tree Genetics and Genomes, 2010, 6, 57-72.	0.6	79
51	Rootstock genotype succession influences apple replant disease and root-zone microbial community composition in an orchard soil. Plant and Soil, 2010, 337, 259-272.	1.8	75
52	Comparative Analysis and Functional Annotation of a Large Expressed Sequence Tag Collection of Apple. Plant Genome, 2009, 2, .	1.6	28
53	Nomenclature and genetic relationships of apples and pears from Terceira Island. Genetic Resources and Crop Evolution, 2009, 56, 339-352.	0.8	21
54	PROGRESS IN EVALUATING MALUS SIEVERSII FOR DISEASE RESISTANCE AND HORTICULTURAL TRAITS. Acta Horticulturae, 2009, , 59-66.	0.1	19

#	Article	IF	Citations
55	Interaction of Brassicaceous Seed Meal and Apple Rootstock on Recovery of <i>Pythium</i> spp. and <i>Pratylenchus penetrans</i> from Roots Grown in Replant Soils. Plant Disease, 2009, 93, 51-57.	0.7	80
56	Fire Blight Resistance of Budagovsky 9 Apple Rootstock. Plant Disease, 2008, 92, 385-391.	0.7	11
57	BUDAGOVSKY 9 ROOTSTOCK: UNCOVERING A NOVEL RESISTANCE TO FIRE BLIGHT. Acta Horticulturae, 2008, , 321-324.	0.1	3
58	Field Evaluation of 64 Apple Rootstocks for Orchard Performance and Fire Blight Resistance. Hortscience: A Publication of the American Society for Hortcultural Science, 2007, 42, 1517-1525.	0.5	58
59	Conformity and genetic relatedness estimation in crop species having a narrow genetic base: the case of cucumber (Cucumis sativus L.)*. Plant Breeding, 2005, 124, 44-53.	1.0	37
60	(314) Geneva® 41: A New Fire Blight Resistant, Dwarf Apple Rootstock. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 1027A-1027.	0.5	3
61	(315) Geneva® 935: A New Fire Blight Resistant, Semidwarfing Apple rootstock. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 1027B-1027.	0.5	1
62	Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theoretical and Applied Genetics, 2003, 107, 864-874.	1.8	137
63	Inheritance of Chilling Injury: A Maternally Inherited Trait in Cucumber. Journal of the American Society for Horticultural Science, 2003, 128, 526-530.	0.5	31
64	Development and Characterization of PCR Markers in Cucumber. Journal of the American Society for Horticultural Science, 2002, 127, 545-557.	0.5	62
65	The Formation of Test Arrays and a Core Collection in Cucumber Using Phenotypic and Molecular Marker Data. Journal of the American Society for Horticultural Science, 2002, 127, 558-567.	0.5	19
66	Title is missing!. Euphytica, 2000, 115, 225-241.	0.6	102
67	Identification of RAPD markers linked to fusarium crown and root rot resistance (Frl) in tomato. Euphytica, 1999, 105, 205-210.	0.6	27
68	Mapping of the Frl Locus Conferring Resistance to Fusarium oxysporum f.sp. radicis-lycopersici(FORL) in Tomato and Identification of RAPD Markers Linked to a New Source of Resistance. Hortscience: A Publication of the American Society for Hortcultural Science, 1997, 32, 449E-450.	0.5	0