Wenchao Xiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9231329/publications.pdf

Version: 2024-02-01

22 1,418 17
papers citations h-index

22 22 1579
all docs docs citations times ranked citing authors

21

g-index

#	Article	IF	CITATIONS
1	Nanochitins of Varying Aspect Ratio and Properties of Microfibers Produced by Interfacial Complexation with Seaweed Alginate. ACS Sustainable Chemistry and Engineering, 2020, 8, 1137-1145.	6.7	24
2	Microfibers synthesized by wet-spinning of chitin nanomaterials: mechanical, structural and cell proliferation properties. RSC Advances, 2020, 10, 29450-29459.	3.6	19
3	Exploring Large Ductility in Cellulose Nanopaper Combining High Toughness and Strength. ACS Nano, 2020, 14, 11150-11159.	14.6	45
4	Chirality from Cryo-Electron Tomograms of Nanocrystals Obtained by Lateral Disassembly and Surface Etching of Never-Dried Chitin. ACS Nano, 2020, 14, 6921-6930.	14.6	30
5	Nanofibrillar networks enable universal assembly of superstructured particle constructs. Science Advances, 2020, 6, eaaz7328.	10.3	44
6	Bubble Attachment to Cellulose and Silica Surfaces of Varied Surface Energies: Wetting Transition and Implications in Foam Forming. Langmuir, 2020, 36, 7296-7308.	3.5	13
7	Adsorption and Assembly of Cellulosic and Lignin Colloids at Oil/Water Interfaces. Langmuir, 2019, 35, 571-588.	3.5	120
8	Twoâ€Phase Emulgels for Direct Ink Writing of Skinâ€Bearing Architectures. Advanced Functional Materials, 2019, 29, 1902990.	14.9	60
9	How Cellulose Nanofibrils Affect Bulk, Surface, and Foam Properties of Anionic Surfactant Solutions. Biomacromolecules, 2019, 20, 4361-4369.	5.4	36
10	Acetylated Nanocellulose for Single-Component Bioinks and Cell Proliferation on 3D-Printed Scaffolds. Biomacromolecules, 2019, 20, 2770-2778.	5.4	81
11	Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 2. In vitro lipid digestion. Food Hydrocolloids, 2019, 96, 709-716.	10.7	89
12	Measuring the Interfacial Behavior of Sugar-Based Surfactants to Link Molecular Structure and Uses. , 2019, , 387-412.		1
13	Surface Activity and Foaming Capacity of Aggregates Formed between an Anionic Surfactant and Non-Cellulosics Leached from Wood Fibers. Biomacromolecules, 2019, 20, 2286-2294.	5.4	15
14	Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 1. Formation and stability. Food Hydrocolloids, 2019, 96, 699-708.	10.7	190
15	Self-Assembled Networks of Short and Long Chitin Nanoparticles for Oil/Water Interfacial Superstabilization. ACS Sustainable Chemistry and Engineering, 2019, 7, 6497-6511.	6.7	97
16	Food emulsifiers based on milk fat globule membranes and their interactions with calcium and casein phosphoproteins. Food Hydrocolloids, 2019, 94, 30-37.	10.7	22
17	Pickering emulsions by combining cellulose nanofibrils and nanocrystals: phase behavior and depletion stabilization. Green Chemistry, 2018, 20, 1571-1582.	9.0	243
18	Formulation and Stabilization of Concentrated Edible Oil-in-Water Emulsions Based on Electrostatic Complexes of a Food-Grade Cationic Surfactant (Ethyl Lauroyl Arginate) and Cellulose Nanocrystals. Biomacromolecules, 2018, 19, 1674-1685.	5.4	103

#	Article	IF	CITATION
19	Foam Processing of Fibers As a Sustainable Alternative to Wet-Laying: Fiber Web Properties and Cause–Effect Relations. ACS Sustainable Chemistry and Engineering, 2018, 6, 14423-14431.	6.7	15
20	Nanocellulose–surfactant interactions. Current Opinion in Colloid and Interface Science, 2017, 29, 57-67.	7.4	134
21	Interfacial Stabilization of Fiber-Laden Foams with Carboxymethylated Lignin toward Strong Nonwoven Networks. ACS Applied Materials & Samp; Interfaces, 2016, 8, 19827-19835.	8.0	21
22	Paper-based plasmon-enhanced protein sensing by controlled nucleation of silver nanoparticles on cellulose. Cellulose, 2015, 22, 4027-4034.	4.9	16