Say Ay Viengchareun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9230871/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	miR-324-5p and miR-30c-2-3p Alter Renal Mineralocorticoid Receptor Signaling under Hypertonicity. Cells, 2022, 11, 1377.	1.8	4
2	Antagonistic effects of finerenone and spironolactone on the aldosteroneâ€regulated transcriptome of human kidney cells. FASEB Journal, 2021, 35, e21314.	0.2	12
3	Sexual Dimorphism of Corticosteroid Signaling during Kidney Development. International Journal of Molecular Sciences, 2021, 22, 5275.	1.8	5
4	Pathogenic Effects of Mineralocorticoid Pathway Activation in Retinal Pigment Epithelium. International Journal of Molecular Sciences, 2021, 22, 9618.	1.8	11
5	The invention of aldosterone, how the past resurfaces in pediatric endocrinology. Molecular and Cellular Endocrinology, 2021, 535, 111375.	1.6	3
6	Adrenomedullin: new inhibitory regulator for cortisol synthesis and secretion. Journal of Endocrinology, 2021, 251, 97-109.	1.2	1
7	Loss of KDM1A in GIP-dependent primary bilateral macronodular adrenal hyperplasia with Cushing's syndrome: a multicentre, retrospective, cohort study. Lancet Diabetes and Endocrinology,the, 2021, 9, 813-824.	5.5	34
8	Interaction between accumulated 21-deoxysteroids and mineralocorticoid signaling in 21-hydroxylase deficiency. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E102-E110.	1.8	8
9	Urinary steroidomic profiles by LC-MS/MS to monitor classic 21-Hydroxylase deficiency. Journal of Steroid Biochemistry and Molecular Biology, 2020, 198, 105553.	1.2	19
10	Preterm birth is associated with epigenetic programming of transgenerational hypertension in mice. Experimental and Molecular Medicine, 2020, 52, 152-165.	3.2	8
11	Hypermethylator Phenotype and Ectopic GIP Receptor in GNAS Mutation-Negative Somatotropinomas. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1777-1787.	1.8	25
12	UCP1 transrepression in Brown Fat in vivo and mineralocorticoid receptor anti-thermogenic effects. Annales D'Endocrinologie, 2019, 80, 1-9.	0.6	7
13	SUN-017 Impact of Steroid Precursors and Minor Metabolites Quantified by LC-MS-MS on Salt Wasting in 21-Hydroxylase Deficient Patients. Journal of the Endocrine Society, 2019, 3, .	0.1	0
14	OR10-1 Regulation of Glucocorticoid Metabolism: A Novel Function for Thyroid Hormones?. Journal of the Endocrine Society, 2019, 3, .	0.1	0
15	OR07-4 Preterm Birth and Transgenerational Epigenetic Programming of Hypertension in Mice. Journal of the Endocrine Society, 2019, 3, .	0.1	0
16	Specific Activation of the Alternative Cardiac Promoter of <i>Cacna1c</i> by the Mineralocorticoid Receptor. Circulation Research, 2018, 122, e49-e61.	2.0	15
17	Genomic Alterations and Complex Subclonal Architecture in Sporadic GH-Secreting Pituitary Adenomas. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 1929-1939.	1.8	43

18 Aldosterone Receptors. , 2018, , 546-551.

#	Article	IF	CITATIONS
19	Corticosteroid receptors adopt distinct cyclical transcriptional signatures. FASEB Journal, 2018, 32, 5626-5639.	0.2	22
20	Familial Multiplicity of Estrogen Insensitivity Associated with a Loss-of-Function <i>ESR1</i> Mutation. Journal of Clinical Endocrinology and Metabolism, 2017, 102, jc.2016-2749.	1.8	35
21	Green mamba peptide targets type-2 vasopressin receptor against polycystic kidney disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7154-7159.	3.3	33
22	RNA-binding protein HuR enhances mineralocorticoid signaling in renal KC3AC1 cells under hypotonicity. Cellular and Molecular Life Sciences, 2017, 74, 4587-4597.	2.4	7
23	HuR-Dependent Editing of a New Mineralocorticoid Receptor Splice Variant Reveals an Osmoregulatory Loop for Sodium Homeostasis. Scientific Reports, 2017, 7, 4835.	1.6	8
24	Sex-Specificity of Mineralocorticoid Target Gene Expression during Renal Development, and Long-Term Consequences. International Journal of Molecular Sciences, 2017, 18, 457.	1.8	11
25	Adrenal GIPR expression and chromosome 19q13 microduplications in GIP-dependent Cushing's syndrome. JCI Insight, 2017, 2, .	2.3	38
26	AIP mutations impair AhR signaling in pituitary adenoma patients fibroblasts and in GH3 cells. Endocrine-Related Cancer, 2016, 23, 433-443.	1.6	24
27	Switchable Cardiac L Type Ca2+ Channel Transcript by Mineralocorticoid Pathway. Biophysical Journal, 2016, 110, 438a-439a.	0.2	0
28	Mild pituitary phenotype in 3- and 12-month-old Aip-deficient male mice. Journal of Endocrinology, 2016, 231, 59-69.	1.2	15
29	Glucocorticoids stimulate endolymphatic water reabsorption in inner ear through aquaporin 3 regulation. Pflugers Archiv European Journal of Physiology, 2015, 467, 1931-1943.	1.3	40
30	Finerenone Impedes Aldosterone-dependent Nuclear Import of the Mineralocorticoid Receptor and Prevents Genomic Recruitment of Steroid Receptor Coactivator-1. Journal of Biological Chemistry, 2015, 290, 21876-21889.	1.6	116
31	Cistrome of the aldosterone-activated mineralocorticoid receptor in human renal cells. FASEB Journal, 2015, 29, 3977-3989.	0.2	59
32	The Lack of Antitumor Effects of o,p′DDA Excludes Its Role as an Active Metabolite of Mitotane for Adrenocortical Carcinoma Treatment. Hormones and Cancer, 2014, 5, 312-323.	4.9	19
33	Paradoxical resistance to high-fat diet-induced obesity and altered macrophage polarization in mineralocorticoid receptor-overexpressing mice. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E75-E90.	1.8	15
34	Hypertonicity Compromises Renal Mineralocorticoid Receptor Signaling through Tis11b-Mediated Post-Transcriptional Control. Journal of the American Society of Nephrology: JASN, 2014, 25, 2213-2221.	3.0	15
35	SFP CO-62 - Conséquences rénales de l'exposition maternelle périnatale au sel ou glucocorticoÃ⁻des. Archives De Pediatrie, 2014, 21, 640.	0.4	0
36	Autocrine positive regulatory feedback of glucocorticoid secretion: Glucocorticoid receptor directly impacts H295R human adrenocortical cell function. Molecular and Cellular Endocrinology, 2014, 395, 1-9.	1.6	22

SAY AY VIENGCHAREUN

#	Article	IF	CITATIONS
37	Ligand-dependent stabilization of androgen receptor in a novel mouse ST38c Sertoli cell line. Molecular and Cellular Endocrinology, 2014, 384, 32-42.	1.6	6
38	The mineralocorticoid signaling pathway throughout development: Expression, regulation and pathophysiological implications. Biochimie, 2013, 95, 148-157.	1.3	62
39	Expression and characterization of androgen receptor coregulators, SRC-2 and HBO1, during human testis ontogenesis and in androgen signaling deficient patients. Molecular and Cellular Endocrinology, 2013, 375, 140-148.	1.6	12
40	Germline and somatic genetic variations of TNFAIP3 in lymphoma complicating primary Sjögren's syndrome. Blood, 2013, 122, 4068-4076.	0.6	103
41	Two Families with Normosmic Congenital Hypogonadotropic Hypogonadism and Biallelic Mutations in KISS1R (KISS1 Receptor): Clinical Evaluation and Molecular Characterization of a Novel Mutation. PLoS ONE, 2013, 8, e53896.	1.1	38
42	Double <i>Myod</i> and <i>lgf2</i> inactivation promotes brown adipose tissue development by increasing <i>Prdm16</i> expression. FASEB Journal, 2012, 26, 4584-4591.	0.2	27
43	Beige differentiation of adipose depots in mice lacking prolactin receptor protects against highâ€fatâ€dietâ€induced obesity. FASEB Journal, 2012, 26, 3728-3737.	0.2	65
44	Vasopressin, ATP and catecholamines differentially control potassium secretion in inner ear cell line. FEBS Letters, 2011, 585, 2703-2708.	1.3	4
45	Aldosterone Postnatally, but not at Birth, Is Required for Optimal Induction of Renal Mineralocorticoid Receptor Expression and Sodium Reabsorption. Endocrinology, 2011, 152, 2483-2491.	1.4	9
46	Familial Glucocorticoid Receptor Haploinsufficiency by Non-Sense Mediated mRNA Decay, Adrenal Hyperplasia and Apparent Mineralocorticoid Excess. PLoS ONE, 2010, 5, e13563.	1.1	48
47	Mineralocorticoid receptor overexpression in embryonic stem cell-derived cardiomyocytes increases their beating frequency. Cardiovascular Research, 2010, 87, 467-475.	1.8	20
48	Regulation of Mineralocorticoid Receptor Expression during Neuronal Differentiation of Murine Embryonic Stem Cells. Endocrinology, 2010, 151, 2244-2254.	1.4	21
49	Osmotic Stress Regulates Mineralocorticoid Receptor Expression in a Novel Aldosterone-Sensitive Cortical Collecting Duct Cell Line. Molecular Endocrinology, 2009, 23, 1948-1962.	3.7	44
50	Low Renal Mineralocorticoid Receptor Expression at Birth Contributes to Partial Aldosterone Resistance in Neonates. Endocrinology, 2009, 150, 4414-4424.	1.4	76
51	Involvement of SIK2/TORC2 signaling cascade in the regulation of insulin-induced <i>PGC-1</i> α and <i>UCP-1</i> gene expression in brown adipocytes. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E1430-E1439.	1.8	47
52	Dietary xenoestrogens differentially impair 3T3-L1 preadipocyte differentiation and persistently affect leptin synthesis. Journal of Steroid Biochemistry and Molecular Biology, 2008, 110, 95-103.	1.2	101
53	Epithelial Sodium Channel Is a Key Mediator of Growth Hormone-Induced Sodium Retention in Acromegaly. Endocrinology, 2008, 149, 3294-3305.	1.4	86
54	Prolactin Receptor Signaling Is Essential for Perinatal Brown Adipocyte Function: A Role for Insulin-like Growth Factor-2. PLoS ONE, 2008, 3, e1535.	1.1	60

SAY AY VIENGCHAREUN

#	Article	IF	CITATIONS
55	Pivotal role of the mineralocorticoid receptor in corticosteroidâ€induced adipogenesis. FASEB Journal, 2007, 21, 2185-2194.	0.2	277
56	The Mineralocorticoid Receptor: Insights into its Molecular and (Patho)Physiological Biology. Nuclear Receptor Signaling, 2007, 5, nrs.05012.	1.0	248
57	Mitochondrial Toxicity of Indinavir, Stavudine and Zidovudine Involves Multiple Cellular Targets in white and brown adipocytes. Antiviral Therapy, 2007, 12, 919-930.	0.6	40
58	Functional IsK/KvLQT1 Potassium Channel in a New Corticosteroid-sensitive Cell Line Derived from the Inner Ear. Journal of Biological Chemistry, 2006, 281, 10496-10507.	1.6	13
59	The Elongation Factor ELL (Eleven-Nineteen Lysine-Rich Leukemia) Is a Selective Coregulator for Steroid Receptor Functions. Molecular Endocrinology, 2005, 19, 1158-1169.	3.7	79
60	Enhancement of β-adrenergic cAMP-signaling by the mineralocorticoid receptor. Molecular and Cellular Endocrinology, 2005, 231, 23-31.	1.6	15
61	Prolactin potentiates insulin-stimulated leptin expression and release from differentiated brown adipocytes. Journal of Molecular Endocrinology, 2004, 33, 679-691.	1.1	32
62	New Naturally Occurring Missense Mutations of the Human Mineralocorticoid Receptor Disclose Important Residues Involved in Dynamic Interactions with Deoxyribonucleic Acid, Intracellular Trafficking, and Ligand Binding. Molecular Endocrinology, 2004, 18, 2151-2165.	3.7	37
63	Inactivating mutations of the mineralocorticoid receptor in Type I pseudohypoaldosteronism. Molecular and Cellular Endocrinology, 2004, 217, 119-125.	1.6	61
64	Expression and function of the human mineralocorticoid receptor: lessons from transgenic mouse models. Molecular and Cellular Endocrinology, 2004, 217, 127-136.	1.6	41
65	Protein Inhibitor of Activated Signal Transducer and Activator of Transcription 1 Interacts with the N-Terminal Domain of Mineralocorticoid Receptor and Represses Its Transcriptional Activity: Implication of Small Ubiquitin-Related Modifier 1 Modification. Molecular Endocrinology, 2003, 17, 2529-2542	3.7	109
66	Cyclosporine A and FK506 Inhibit Transcriptional Activity of the Human Mineralocorticoid Receptor: A Cell-Based Model to Investigate Partial Aldosterone Resistance in Kidney Transplantation. Endocrinology, 2002, 143, 1932-1941.	1.4	59
67	Brown adipocytes are novel sites of expression and regulation of adiponectin and resistin. FEBS Letters, 2002, 532, 345-350.	1.3	103
68	Cyclosporine A and FK506 Inhibit Transcriptional Activity of the Human Mineralocorticoid Receptor: A Cell-Based Model to Investigate Partial Aldosterone Resistance in Kidney Transplantation. Endocrinology, 2002, 143, 1932-1941.	1.4	13
69	Mineralocorticoid and glucocorticoid receptors inhibit UCP expression and function in brown adipocytes. American Journal of Physiology - Endocrinology and Metabolism, 2001, 280, E640-E649.	1.8	90
70	Insulin and glucocorticoids differentially regulate leptin transcription and secretion in brown adipocytes. FASEB Journal, 2001, 15, 1357-1366.	0.2	49
71	Alteration of Cardiac and Renal Functions in Transgenic Mice Overexpressing Human Mineralocorticoid Receptor. Journal of Biological Chemistry, 2001, 276, 38911-38920.	1.6	106
72	A New Human MR Splice Variant Is a Ligand-Independent Transactivator Modulating Corticosteroid Action. Molecular Endocrinology, 2001, 15, 1586-1598.	3.7	94

#	Article	IF	CITATIONS
73	Basolateral Translocation by Vasopressin of the Aldosterone-Induced Pool of Latent Na-K-ATPases Is Accompanied by α1 Subunit Dephosphorylation. Journal of the American Society of Nephrology: JASN, 2001, 12, 1805-1818.	3.0	30
74	Transgenic mouse models to study human mineralocorticoid receptor function in vivo. Kidney International, 2000, 57, 1299-1306.	2.6	15
75	The mineralocorticoid receptor mediates aldosterone-induced differentiation of T37i cells into brown adipocytes. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E386-E394.	1.8	70
76	Targeted Oncogenesis Reveals a Distinct Tissue-specific Utilization of Alternative Promoters of the Human Mineralocorticoid Receptor Gene in Transgenic Mice. Journal of Biological Chemistry, 2000, 275, 7878-7886.	1.6	44
77	SV40 Large T Antigen Expression Driven by col2a1 Regulatory Sequences Immortalizes Articular Chondrocytes but Does Not Allow Stabilization of Type II Collagen Expression. Experimental Cell Research, 1999, 249, 248-259.	1.2	30
78	The transfection of rabbit articular chondrocytes is independent of their differentiation state. In Vitro Cellular and Developmental Biology - Animal, 1997, 33, 15-17.	0.7	10
79	Transfection of rabbit articular chondrocytes by the calcium phosphate procedure: Improvement of efficiency and reproducibility. Cytotechnology, 1996, 19, 89-94.	0.7	4
80	KISS1Rmutations in normosmic congenital hypogonadotropic hypogonadism: clinical evaluation of two families and molecular characterization of a novel mutation. Endocrine Abstracts, 0, , .	0.0	0
81	Sex dimorphism of renal corticosteroid signaling during development and long term consequence on blood pressure. Endocrine Abstracts, 0, , .	0.0	0
82	Identification of a new glucocorticoid receptor mutation underscores the substantial prevalence of genetic NR3C1 alterations in adrenal hyperplasia: the French National Research Program MUTA-GR. Endocrine Abstracts, 0, , .	0.0	0
83	Epigenetic programming of transgenerational hypertension in preterm birth mice. Endocrine Abstracts, 0, , .	0.0	0
84	MicroRNAs regulate aldosterone signaling by post-transcriptional control of mineralocorticoid receptor expression. Endocrine Abstracts, 0, , .	0.0	0
85	Thyroid hormones are new key regulators of glucocorticoid metabolism. Endocrine Abstracts, 0, , .	0.0	1