
Eugenie S Kleinerman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9230865/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Osteosarcoma: The Addition of Muramyl Tripeptide to Chemotherapy Improves Overall Survival—A Report From the Children's Oncology Group. Journal of Clinical Oncology, 2008, 26, 633-638.	1.6	666
2	Osteosarcoma: A Randomized, Prospective Trial of the Addition of Ifosfamide and/or Muramyl Tripeptide to Cisplatin, Doxorubicin, and High-Dose Methotrexate. Journal of Clinical Oncology, 2005, 23, 2004-2011.	1.6	649
3	Osteosarcoma Overview. Rheumatology and Therapy, 2017, 4, 25-43.	2.3	317
4	miR-20a Encoded by the miR-17–92 Cluster Increases the Metastatic Potential of Osteosarcoma Cells by Regulating Fas Expression. Cancer Research, 2012, 72, 908-916.	0.9	162
5	A nude mouse model of human osteosarcoma lung metastases for evaluating new therapeutic strategies. Clinical and Experimental Metastasis, 1999, 17, 501-506.	3.3	126
6	Antiâ€₽Dâ€1 therapy redirects macrophages from an M2 to an M1 phenotype inducing regression of OS lung metastases. Cancer Medicine, 2018, 7, 2654-2664.	2.8	126
7	A Small Interfering RNA Targeting Vascular Endothelial Growth Factor Inhibits Ewing's Sarcoma Growth in a Xenograft Mouse Model. Clinical Cancer Research, 2005, 11, 2662-2669.	7.0	111
8	Efficacy of Liposomal Muramyl Tripeptide (CGP 19835A) in the Treatment of Relapsed Osteosarcoma. American Journal of Clinical Oncology: Cancer Clinical Trials, 1995, 18, 93-99.	1.3	110
9	Anthracycline-Induced Cardiotoxicity: Causes, Mechanisms, and Prevention. Advances in Experimental Medicine and Biology, 2020, 1257, 181-192.	1.6	104
10	Genetically Modified T cells Targeting Interleukin-11 Receptor α-Chain Kill Human Osteosarcoma Cells and Induce the Regression of Established Osteosarcoma Lung Metastases. Cancer Research, 2012, 72, 271-281.	0.9	103
11	Aerosol gemcitabine inhibits the growth of primary osteosarcoma and osteosarcoma lung metastases. International Journal of Cancer, 2005, 116, 458-463.	5.1	90
12	Increased Fas Expression Reduces the Metastatic Potential of Human Osteosarcoma Cells. Clinical Cancer Research, 2004, 10, 8114-8119.	7.0	86
13	The Narrow-Spectrum HDAC Inhibitor Entinostat Enhances NKG2D Expression Without NK Cell Toxicity, Leading to Enhanced Recognition of Cancer Cells. Pharmaceutical Research, 2015, 32, 779-792.	3.5	86
14	Exosomal communication by metastatic osteosarcoma cells modulates alveolar macrophages to an M2 tumor-promoting phenotype and inhibits tumoricidal functions. Oncolmmunology, 2020, 9, 1747677.	4.6	75
15	Growth suppression of established human osteosarcoma lung metastases in mice by aerosol gene therapy with PEI– p53 complexes. Cancer Gene Therapy, 2001, 8, 619-627.	4.6	70
16	Corruption of the Fas Pathway Delays the Pulmonary Clearance of Murine Osteosarcoma Cells, Enhances Their Metastatic Potential, and Reduces the Effect of Aerosol Gemcitabine. Clinical Cancer Research, 2007, 13, 4503-4510.	7.0	69
17	Murine bone marrow–derived mesenchymal stem cells as vehicles for interleukinâ€12 gene delivery into Ewing sarcoma tumors. Cancer, 2009, 115, 13-22.	4.1	68
18	Fas-Negative Osteosarcoma Tumor Cells Are Selected during Metastasis to the Lungs: The Role of the Fas Pathway in the Metastatic Process of Osteosarcoma. Molecular Cancer Research, 2007, 5, 991-999.	3.4	63

#	Article	IF	CITATIONS
19	Early Lymphocyte Recovery as a Prognostic Indicator for High-risk Ewing Sarcoma. Journal of Pediatric Hematology/Oncology, 2007, 29, 48-52.	0.6	62
20	Eradication of osteosarcoma lung metastases following intranasal interleukin-12 gene therapy using a nonviral polyethylenimine vector. Cancer Gene Therapy, 2002, 9, 260-266.	4.6	57
21	Vaccine efficacy against primary and metastatic cancer with in vitro-generated CD103 ⁺ conventional dendritic cells. , 2020, 8, e000474.		57
22	Fas expression inversely correlates with metastatic potential in osteosarcoma cells. Oncology Reports, 2002, 9, 823-7.	2.6	57
23	Targeting Lyn inhibits tumor growth and metastasis in Ewing's sarcoma. Molecular Cancer Therapeutics, 2008, 7, 1807-1816.	4.1	54
24	Vasculogenesis Plays a Role in the Growth of Ewing's Sarcoma in Vivo. Clinical Cancer Research, 2002, 8, 3622-7.	7.0	53
25	Aerosol gene therapy with PEI: IL-12 eradicates osteosarcoma lung metastases. Clinical Cancer Research, 2003, 9, 3462-8.	7.0	51
26	Stromal cellâ€derived factorâ€1 stimulates vasculogenesis and enhances Ewing's sarcoma tumor growth in the absence of vascular endothelial growth factor. International Journal of Cancer, 2008, 123, 831-837.	5.1	47
27	Bone Marrow Subsets Differentiate into Endothelial Cells and Pericytes Contributing to Ewing's Tumor Vessels. Molecular Cancer Research, 2008, 6, 929-936.	3.4	46
28	CAPERâ€Î± alternative splicing regulates the expression of vascular endothelial growth factor ₁₆₅ in Ewing sarcoma cells. Cancer, 2012, 118, 2106-2116.	4.1	45
29	Intranasal interleukin-12 gene therapy enhanced the activity of ifosfamide against osteosarcoma lung metastases. Cancer, 2006, 106, 1382-1388.	4.1	44
30	Fas Expression in Lung Metastasis From Osteosarcoma Patients. Journal of Pediatric Hematology/Oncology, 2005, 27, 611-615.	0.6	42
31	Production of VEGF165 by Ewing's sarcoma cells induces vasculogenesis and the incorporation of CD34+ stem cells into the expanding tumor vasculature. International Journal of Cancer, 2006, 119, 839-846.	5.1	42
32	Alpha Particle Radium 223 Dichloride in High-risk Osteosarcoma: A Phase I Dose Escalation Trial. Clinical Cancer Research, 2019, 25, 3802-3810.	7.0	42
33	Association of $\hat{I}_{\pm} v \hat{I}^2$ 3 integrin expression with the metastatic potential and migratory and chemotactic ability of human osteosarcoma cells. Clinical and Experimental Metastasis, 2005, 21, 747-753.	3.3	41
34	9â€Nitrocamptothecin Liposome Aerosol Treatment of Human Cancer Subcutaneous Xenografts and Pulmonary Cancer Metastases in Mice. Annals of the New York Academy of Sciences, 2000, 922, 151-163.	3.8	41
35	The Histone Deacetylase Inhibitor, MS-275 (Entinostat), Downregulates c-FLIP, Sensitizes Osteosarcoma Cells to FasL, and Induces the Regression of Osteosarcoma Lung Metastases. Current Cancer Drug Targets, 2013, 13, 411-422.	1.6	41
36	Suppression of Ewing's Sarcoma Tumor Growth, Tumor Vessel Formation, and Vasculogenesis Following Anti–Vascular Endothelial Growth Factor Receptor-2 Therapy. Clinical Cancer Research, 2007, 13, 4867-4873.	7.0	40

#	Article	IF	CITATIONS
37	Aerosol Gemcitabine: Preclinical Safety and <i>In Vivo</i> Antitumor Activity in Osteosarcoma-Bearing Dogs. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2010, 23, 197-206.	1.4	39
38	Blocking SDF-1α/CXCR4 Downregulates PDGF-B and Inhibits Bone Marrow–Derived Pericyte Differentiation and Tumor Vascular Expansion in Ewing Tumors. Molecular Cancer Therapeutics, 2014, 13, 483-491.	4.1	37
39	The Role of Fas/FasL in the Metastatic Potential of Osteosarcoma and Targeting this Pathway for the Treatment of Osteosarcoma Lung Metastases. Cancer Treatment and Research, 2009, 152, 497-508.	0.5	37
40	Expression of granulocyteâ€colonyâ€stimulating factor and its receptor in human Ewing sarcoma cells and patient tumor specimens. Cancer, 2007, 110, 1568-1577.	4.1	36
41	Aerosol Therapy for the Treatment of Osteosarcoma Lung Metastases: Targeting the Fas/FasL Pathway and Rationale for the Use of Gemcitabine. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2010, 23, 189-196.	1.4	36
42	Delta-like ligand 4–Notch signaling regulates bone marrow–derived pericyte/vascular smooth muscle cell formation. Blood, 2011, 117, 719-726.	1.4	36
43	Interleukin-12 Up-Regulates Fas Expression in Human Osteosarcoma and Ewing's Sarcoma Cells by Enhancing Its Promoter Activity. Molecular Cancer Research, 2005, 3, 685-692.	3.4	35
44	Exploratory Analysis of Fas Gene Polymorphisms in Pediatric Osteosarcoma Patients. Journal of Pediatric Hematology/Oncology, 2007, 29, 815-821.	0.6	35
45	Natural killer cell therapy and aerosol interleukinâ€2 for the treatment of osteosarcoma lung metastasis. Pediatric Blood and Cancer, 2014, 61, 618-626.	1.5	35
46	Delta-Like Ligand 4 Plays a Critical Role in Pericyte/Vascular Smooth Muscle Cell Formation during Vasculogenesis and Tumor Vessel Expansion in Ewing's Sarcoma. Clinical Cancer Research, 2010, 16, 848-856.	7.0	34
47	E1A gene therapy inhibits angiogenesis in a Ewing's sarcoma animal model. Molecular Cancer Therapeutics, 2003, 2, 1313-9.	4.1	34
48	Effect of entinostat on NK cell-mediated cytotoxicity against osteosarcoma cells and osteosarcoma lung metastasis. Oncolmmunology, 2017, 6, e1333214.	4.6	32
49	Aerobic Exercise During Early Murine Doxorubicin Exposure Mitigates Cardiac Toxicity. Journal of Pediatric Hematology/Oncology, 2018, 40, 208-215.	0.6	32
50	Vascular modulation through exercise improves chemotherapy efficacy in Ewing sarcoma. Pediatric Blood and Cancer, 2019, 66, e27835.	1.5	32
51	SDF-1α Induces PDGF-B Expression and the Differentiation of Bone Marrow Cells into Pericytes. Molecular Cancer Research, 2011, 9, 1462-1470.	3.4	31
52	VEGF165, but not VEGF189, Stimulates Vasculogenesis and Bone Marrow Cell Migration into Ewing's Sarcoma Tumors <i>In vivo</i> . Molecular Cancer Research, 2007, 5, 1125-1132.	3.4	30
53	Effect of the histone deacetylase inhibitor SNDXâ€275 on Fas signaling in osteosarcoma cells and the feasibility of its topical application for the treatment of osteosarcoma lung metastases. Cancer, 2011, 117, 3457-3467.	4.1	30
54	Aerosol interleukinâ€⊋ induces natural killer cell proliferation in the lung and combination therapy improves the survival of mice with osteosarcoma lung metastasis. Pediatric Blood and Cancer, 2014, 61, 1362-1368.	1.5	29

#	Article	IF	CITATIONS
55	Mechanisms of Kupffer cell cytotoxicity in vitro against the syngeneic murine colon adenocarcinoma line MCA26. Journal of Leukocyte Biology, 1993, 53, 715-721.	3.3	26
56	BMTP-11 is active in preclinical models of human osteosarcoma and a candidate targeted drug for clinical translation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8065-8070.	7.1	26
57	VEGF ₁₆₅ Promotes the Osteolytic Bone Destruction of Ewing's Sarcoma Tumors by Upregulating RANKL. Oncology Research, 2009, 18, 117-125.	1.5	26
58	VEGF165 expression in the tumor microenvironment influences the differentiation of bone marrow-derived pericytes that contribute to the Ewing's sarcoma vasculature. Angiogenesis, 2008, 11, 257-267.	7.2	24
59	Maximum benefit of chemotherapy for osteosarcoma achieved—what are the next steps?. Lancet Oncology, The, 2016, 17, 1340-1342.	10.7	24
60	Using the Spleen as an <i>In Vivo</i> Systemic Immune Barometer Alongside Osteosarcoma Disease Progression and Immunotherapy with <i>α</i> -PD-L1. Sarcoma, 2018, 2018, 1-13.	1.3	24
61	ImmTher, a lipophilic disaccharide derivative of muramyl dipeptide, up-regulates specific monocyte cytokine genes and activates monocyte-mediated tumoricidal activity. Cancer Immunology, Immunotherapy, 1999, 48, 312-320.	4.2	23
62	Vasculogenesis Driven by Bone Marrow-Derived Cells Is Essential for Growth of Ewing's Sarcomas. Cancer Research, 2010, 70, 1334-1343.	0.9	23
63	Epigenetic Regulation of Apoptosis and Cell Cycle in Osteosarcoma. Sarcoma, 2011, 2011, 1-5.	1.3	22
64	Participation of the Fas/FasL Signaling Pathway and the Lung Microenvironment in the Development of Osteosarcoma Lung Metastases. Advances in Experimental Medicine and Biology, 2014, 804, 203-217.	1.6	22
65	Interleukin-12 Enhances the Sensitivity of Human Osteosarcoma Cells to 4-Hydroperoxycyclophosphamide by a Mechanism Involving the Fas/Fas-Ligand Pathway. Clinical Cancer Research, 2004, 10, 777-783.	7.0	21
66	EWSâ€FLIâ€1 regulates the neuronal repressor gene REST, which controls Ewing sarcoma growth and vascular morphology. Cancer, 2014, 120, 579-588.	4.1	21
67	Diet and exercise interventions for pediatric cancer patients during therapy: tipping the scales for better outcomes. Pediatric Research, 2018, 83, 50-56.	2.3	21
68	Tumor Vessel Development and Expansion in Ewing's Sarcoma: A Review of the Vasculogenesis Process and Clinical Trials with Vascular-Targeting Agents. Sarcoma, 2011, 2011, 1-7.	1.3	20
69	Induction of NKG2D Ligands on Solid Tumors Requires Tumor-Specific CD8+ T Cells and Histone Acetyltransferases. Cancer Immunology Research, 2017, 5, 300-311.	3.4	20
70	Expression of câ€FLIP in pulmonary metastases in osteosarcoma patients and human xenografts. Pediatric Blood and Cancer, 2013, 60, 575-579.	1.5	19
71	Exercise Inhibits Doxorubicin-Induced Damage to Cardiac Vessels and Activation of Hippo/YAP-Mediated Apoptosis. Cancers, 2021, 13, 2740.	3.7	17
72	Exercise intervention decreases acute and late doxorubicinâ€induced cardiotoxicity. Cancer Medicine, 2021. 10. 7572-7584.	2.8	17

#	Article	IF	CITATIONS
73	Exosomes: Dynamic Mediators of Extracellular Communication in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1258, 189-197.	1.6	16
74	Lack of Immunomodulatory Interleukin-27 Enhances Oncogenic Properties of Mutant p53 <i>In Vivo</i> . Clinical Cancer Research, 2016, 22, 3876-3883.	7.0	15
75	Hes4: A potential prognostic biomarker for newly diagnosed patients with highâ€grade osteosarcoma. Pediatric Blood and Cancer, 2017, 64, e26318.	1.5	15
76	Phosphorylated heat shock protein 27 as a potential biomarker to predict the role of chemotherapy-induced autophagy in osteosarcoma response to therapy. Oncotarget, 2018, 9, 1602-1616.	1.8	15
77	Analysis of HSP27 and the Autophagy Marker LC3B+ Puncta Following Preoperative Chemotherapy Identifies High-Risk Osteosarcoma Patients. Molecular Cancer Therapeutics, 2018, 17, 1315-1323.	4.1	13
78	Bone marrow cells participate in tumor vessel formation that supports the growth of Ewingâ \in ^M s sarcoma in the lung. Angiogenesis, 2011, 14, 125-133.	7.2	12
79	miR-20a Regulates FAS Expression in Osteosarcoma Cells by Modulating <i>FAS</i> Promoter Activity and Can be Therapeutically Targeted to Inhibit Lung Metastases. Molecular Cancer Therapeutics, 2018, 17, 130-139.	4.1	12
80	Fas Expression in Metastatic Osteosarcoma Cells Is Not Regulated by CpG Island Methylation. Oncology Research, 2009, 18, 31-39.	1.5	9
81	The Fas/FasL Signaling Pathway: Its Role in the Metastatic Process and as a Target for Treating Osteosarcoma Lung Metastases. Advances in Experimental Medicine and Biology, 2020, 1258, 177-187.	1.6	9
82	Knock down of Fas-Associated Protein with Death Domain (FADD) Sensitizes Osteosarcoma to TNFα-induced Cell Death. Journal of Cancer, 2020, 11, 1657-1667.	2.5	8
83	Bempegaldesleukin (BEMPEG ; NKTR â€214) efficacy as a single agent and in combination with checkpointâ€inhibitor therapy in mouse models of osteosarcoma. International Journal of Cancer, 2021, 148, 1928-1937.	5.1	8
84	Clinical characteristics and outcomes of pediatric oncology patients with aggressive biology enrolled in phase I clinical trials designed for adults: The university of Texas MD Anderson cancer center experience. Oncoscience, 2014, 1, 522-530.	2.2	7
85	VEGF165 is necessary to the metastatic potential of Fas(-) osteosarcoma cells but will not rescue the Fas(+) cells. Journal of Experimental Therapeutics and Oncology, 2008, 7, 89-97.	0.5	7
86	[1311]MIBG exports via MRP transporters and inhibition of the MRP transporters improves accumulation of [1311]MIBG in neuroblastoma. Nuclear Medicine and Biology, 2020, 90-91, 49-54.	0.6	6
87	Short-Term Changes in Skeletal Muscle Mass After Anthracycline Administration in Adolescent and Young Adult Sarcoma Patients. Journal of Adolescent and Young Adult Oncology, 2022, 11, 320-322.	1.3	6
88	Up-regulation of pro-angiogenic molecules and events does not relate with an angiogenic switch in metastatic osteosarcoma cells but to cell survival features. Apoptosis: an International Journal on Programmed Cell Death, 2021, 26, 447-459.	4.9	5
89	Prognostic Value of Cell-Surface Vimentin-Positive CTCs in Pediatric Sarcomas. Frontiers in Oncology, 2021, 11, 760267.	2.8	5
90	Short-Term Changes in Cardiac Function in Osteosarcoma Patients Receiving Anthracyclines. Journal of Adolescent and Young Adult Oncology, 2019, 8, 385-386.	1.3	4

#	Article	IF	CITATIONS
91	Neuronal Repressor REST Controls Ewing Sarcoma Growth and Metastasis by Affecting Vascular Pericyte Coverage and Vessel Perfusion. Cancers, 2020, 12, 1405.	3.7	4
92	Aerosol Gemcitabine after Amputation Inhibits Osteosarcoma Lung Metastases but Not Wound Healing. Sarcoma, 2018, 2018, 1-12.	1.3	3
93	Abstract 3008: Effect of exercise on acute and late onset Doxorubicin-induced cardiotoxicity. , 2018, , .		3
94	Metastatic epidural osteosarcoma initially diagnosed as cisplatin neuropathy. Journal of Neuro-Oncology, 1986, 4, 165-167.	2.9	2
95	Abstract 5335: The histone deacetylase inhibitor MS-275 sensitizes osteosarcoma cells and osteosarcoma lung metastases to FasL-induced cell death by the downregulation c-FLIP. , 2011, , .		2
96	Assessment of drug transporters involved in the urinary secretion of [99mTc]dimercaptosuccinic acid. Nuclear Medicine and Biology, 2021, 94-95, 92-97.	0.6	1
97	Meet the Editorial Board Member. Cardiovascular & Hematological Disorders Drug Targets, 2021, 21, 87-87.	0.7	Ο