Sabine Wislet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9230693/publications.pdf Version: 2024-02-01

SARINE WISLET

#	Article	IF	CITATIONS
1	Plasticity of Cultured Mesenchymal Stem Cells: Switch from Nestin-Positive to Excitable Neuron-Like Phenotype. Stem Cells, 2005, 23, 392-402.	1.4	395
2	Regulation of neural markers nestin and GFAP expression by cultivated bone marrow stromal cells. Journal of Cell Science, 2003, 116, 3295-3302.	1.2	166
3	Neutrophil contribution to spinal cord injury and repair. Journal of Neuroinflammation, 2014, 11, 150.	3.1	117
4	α-Synuclein Membrane Association Is Regulated by the Rab3a Recycling Machinery and Presynaptic Activity*. Journal of Biological Chemistry, 2013, 288, 7438-7449.	1.6	96
5	Astrocytic and neuronal fate of mesenchymal stem cells expressing nestin. Brain Research Bulletin, 2005, 68, 95-102.	1.4	82
6	Nestin-positive mesenchymal stem cells favour the astroglial lineage in neural progenitors and stem cells by releasing active BMP4. BMC Neuroscience, 2004, 5, 33.	0.8	81
7	Stem cell factor and mesenchymal and neural stem cell transplantation in a rat model of Huntington's disease. Molecular and Cellular Neurosciences, 2008, 37, 454-470.	1.0	76
8	Concise Review: Adult Mesenchymal Stem Cells, Adult Neural Crest Stem Cells, and Therapy of Neurological Pathologies: A State of Play. Stem Cells Translational Medicine, 2013, 2, 284-296.	1.6	69
9	Concise Review: Spinal Cord Injuries: How Could Adult Mesenchymal and Neural Crest Stem Cells Take Up the Challenge?. Stem Cells, 2014, 32, 829-843.	1.4	59
10	Cytosolic Proteins Regulate α-Synuclein Dissociation from Presynaptic Membranes. Journal of Biological Chemistry, 2006, 281, 32148-32155.	1.6	49
11	Effect of Ser-129 Phosphorylation on Interaction of α-Synuclein with Synaptic and Cellular Membranes. Journal of Biological Chemistry, 2011, 286, 35863-35873.	1.6	49
12	Adult bone marrow mesenchymal and neural crest stem cells are chemoattractive and accelerate motor recovery in a mouse model of spinal cord injury. Stem Cell Research and Therapy, 2015, 6, 211.	2.4	49
13	Medication-Related Osteonecrosis of the Jaw: New Insights into Molecular Mechanisms and Cellular Therapeutic Approaches. Stem Cells International, 2016, 2016, 1-16.	1.2	46
14	Peripheral benzodiazepine receptor (PBR) ligand cytotoxicity unrelated to PBR expression. Biochemical Pharmacology, 2005, 69, 819-830.	2.0	41
15	Adult Bone Marrow: Which Stem Cells for Cellular Therapy Protocols in Neurodegenerative Disorders?. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-10.	3.0	29
16	Human bone marrow harbors cells with neural crest-associated characteristics like human adipose and dermis tissues. PLoS ONE, 2017, 12, e0177962.	1.1	29
17	Adult Bone Marrow Neural Crest Stem Cells and Mesenchymal Stem Cells Are Not Able to Replace Lost Neurons in Acute MPTP-Lesioned Mice. PLoS ONE, 2013, 8, e64723.	1.1	27
18	Wnt1 and BMP2: two factors recruiting multipotent neural crest progenitors isolated from adult bone marrow. Cellular and Molecular Life Sciences, 2011, 68, 2101-2114.	2.4	26

SABINE WISLET

#	Article	IF	CITATIONS
19	From Neural Crest Development to Cancer and Vice Versa: How p75NTR and (Pro)neurotrophins Could Act on Cell Migration and Invasion?. Frontiers in Molecular Neuroscience, 2018, 11, 244.	1.4	26
20	In Vivo Tumorigenesis Was Observed after Injection of In Vitro Expanded Neural Crest Stem Cells Isolated from Adult Bone Marrow. PLoS ONE, 2012, 7, e46425.	1.1	25
21	β-Carbolines induce apoptosis in cultured cerebellar granule neurons via the mitochondrial pathway. Neuropharmacology, 2005, 48, 105-117.	2.0	21
22	Regulation of nestin expression by thrombin and cell density in cultures of bone mesenchymal stem cells and radial glial cells. BMC Neuroscience, 2007, 8, 104.	0.8	17
23	Neuregulin-1 modulates the differentiation of neural stem cells in vitro trough an interaction with the Swi/Snf complex. Molecular and Cellular Neurosciences, 2010, 43, 72-80.	1.0	15
24	Development and Validation of a New Mouse Model to Investigate the Role of SV2A in Epilepsy. PLoS ONE, 2016, 11, e0166525.	1.1	12
25	Are neural crest stem cells the missing link between hematopoietic and neurogenic niches?. Frontiers in Cellular Neuroscience, 2015, 9, 218.	1.8	11
26	Bone Marrow Stromal Stem Cells Transplantation in Mice with Acute Spinal Cord Injury. Methods in Molecular Biology, 2014, 1213, 257-264.	0.4	4
27	Differential membrane marker expression in adult rodent bone marrow mesenchymal and neural crest stem cells. Cytotherapy, 2015, 17, S34.	0.3	0
28	Exploring the secretome of bone marrow mesenchymal and neural crest-derived stem cells for treating spinal cord injuries. Cytotherapy, 2015, 17, S56-S57.	0.3	0
29	Neural crest stem cells are also present is adult human bone marrow and adipose tissue. Cytotherapy, 2015, 17, S37.	0.3	0
30	Editor's Note: Adult bone marrow mesenchymal and neural crest stem cells are chemoattractive and accelerate motor recovery in a mouse model of spinal cord injury. Stem Cell Research and Therapy, 2021, 12, 135.	2.4	0

3