José M Pérez-Bella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9230063/publications.pdf

Version: 2024-02-01

28 papers

445 citations

759233 12 h-index 713466 21 g-index

28 all docs 28 docs citations

times ranked

28

384 citing authors

#	Article	IF	CITATIONS
1	Directional characterisation of annual and temporary exposure to rainwater penetration on building façades throughout Mexico. Building and Environment, 2022, 212, 108837.	6.9	2
2	An alternative approach to estimate any subdaily extreme of rainfall and wind from usually available records. Stochastic Environmental Research and Risk Assessment, 2022, 36, 1819-1833.	4.0	3
3	Advances to enhance the utility of traditional wind-driven rain studies already available in multiple regions. , 2021, , .		O
4	Equivalence between the methods established by ISO 15927-3 to determine wind-driven rain exposure: Reanalysis and improvement proposal. Building and Environment, 2020, 174, 106777.	6.9	6
5	Avoiding the need to directionally determine the exposure to rainwater penetration for façade designs. Building and Environment, 2020, 176, 106850.	6.9	4
6	Improvement of a functional method to determine the design thermal transmittance of building faA§ades. Implementation in southern Spain. Journal of Building Engineering, 2020, 30, 101231.	3.4	2
7	On the significance of the climate-dataset time resolution in characterising wind-driven rain and simultaneous wind pressure. Part I: scalar approach. Stochastic Environmental Research and Risk Assessment, 2018, 32, 1783-1797.	4.0	5
8	On the significance of the climate-dataset time resolution in characterising wind-driven rain and simultaneous wind pressure. Part II: directional analysis. Stochastic Environmental Research and Risk Assessment, 2018, 32, 1799-1815.	4.0	10
9	Assessment of water penetration risk in building facades throughout Brazil. Building Research and Information, 2017, 45, 492-507.	3.9	13
10	Quantitative analysis of the divergence in energy losses allowed through building envelopes. Renewable and Sustainable Energy Reviews, 2015, 49, 1000-1008.	16.4	14
11	Improvement alternatives for determining the watertightness performance of building facades. Building Research and Information, 2015, 43, 723-736.	3.9	7
12	Detailed territorial estimation of design thermal conductivity for façade materials in North-Eastern Spain. Energy and Buildings, 2015, 102, 266-276.	6.7	20
13	A correction factor to approximate the design thermal conductivity of building materials. Application to Spanish façades. Energy and Buildings, 2015, 88, 153-164.	6.7	30
14	Revisión y mejora de la caracterización del grado de impermeabilidad requerido por el CTE DB-HS1 para fachadas de edificación. Informes De La Construccion, 2015, 67, e059.	0.3	2
15	A comparison of methods for determining watertightness test parameters of building façades. Building and Environment, 2014, 78, 145-154.	6.9	12
16	Review of international regulations governing the thermal insulation requirements of residential buildings and the harmonization of envelope energy loss. Renewable and Sustainable Energy Reviews, 2014, 34, 78-90.	16.4	60
17	Procedure for a detailed territorial assessment of wind-driven rain and driving-rain wind pressure and its implementation to three Spanish regions. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 128, 76-89.	3.9	10
18	The use of response surface methodology to improve the thermal transmittance of lightweight concrete hollow bricks by FEM. Construction and Building Materials, 2014, 52, 331-344.	7.2	50

#	Article	IF	CITATIONS
19	APLICACIÓN AL CÓDIGO TÉCNICO DE LA EDIFICACIÓN DE AVANCES EN EL ESTUDIO DE LA EXPOSICIÓN A L HUMEDAD DE FACHADAS. Dyna (Spain), 2014, 89, 440-448.	A _{0.2}	0
20	Global analysis of building façade exposure to water penetration in Chile. Building and Environment, 2013, 70, 284-297.	6.9	16
21	Hygrothermal properties of lightweight concrete: Experiments and numerical fitting study. Construction and Building Materials, 2013, 40, 543-555.	7.2	49
22	Combined use of wind-driven rain and wind pressure to define water penetration risk into building façades: The Spanish case. Building and Environment, 2013, 64, 46-56.	6.9	42
23	Optimised method for estimating directional driving rain from synoptic observation data. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 113, 1-11.	3.9	13
24	A new method for determining the water tightness of building facades. Building Research and Information, 2013, 41, 401-414.	3.9	16
25	An extended method for comparing watertightness tests for facades. Building Research and Information, 2013, 41, 706-721.	3.9	12
26	Education for Sustainable Development: Methodology and Application within a Construction Course. Journal of Professional Issues in Engineering Education and Practice, 2013, 139, 72-79.	0.9	4
27	Estimation of the exposure of buildings to driving rain in Spain from daily wind and rain data. Building and Environment, 2012, 57, 259-270.	6.9	42
28	CALIDAD DE AIRE INTERIOR Y EFICIENCIA ENERGÉTICA. Dyna (Spain), 2012, 87, 74-79.	0.2	1