Lennart Martens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9229564/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PDBe-KB: collaboratively defining the biological context of structural data. Nucleic Acids Research, 2022, 50, D534-D542.	6.5	46
2	Orthogonal proteomics methods to unravel the HOTAIR interactome. Scientific Reports, 2022, 12, 1513.	1.6	3
3	<i>Pout2Prot</i> : An Efficient Tool to Create Protein (Sub)groups from Percolator Output Files. Journal of Proteome Research, 2022, 21, 1175-1180.	1.8	4
4	A comprehensive LFQ benchmark dataset on modern day acquisition strategies in proteomics. Scientific Data, 2022, 9, 126.	2.4	20
5	Sensitive and Specific Spectral Library Searching with CompOmics Spectral Library Searching Tool and Percolator. Journal of Proteome Research, 2022, 21, 1365-1370.	1.8	6
6	MS2Rescore: Data-Driven Rescoring Dramatically Boosts Immunopeptide Identification Rates. Molecular and Cellular Proteomics, 2022, 21, 100266.	2.5	34
7	Unipept Desktop: A Faster, More Powerful Metaproteomics Results Analysis Tool. Journal of Proteome Research, 2021, 20, 2005-2009.	1.8	17
8	Data Management of Sensitive Human Proteomics Data: Current Practices, Recommendations, and Perspectives for the Future. Molecular and Cellular Proteomics, 2021, 20, 100071.	2.5	25
9	MegaGO: A Fast Yet Powerful Approach to Assess Functional Gene Ontology Similarity across Meta-Omics Data Sets. Journal of Proteome Research, 2021, 20, 2083-2088.	1.8	8
10	Personalized Proteome: Comparing Proteogenomics and Open Variant Search Approaches for Single Amino Acid Variant Detection. Journal of Proteome Research, 2021, 20, 3353-3364.	1.8	10
11	The RNA landscape of the human placenta in health and disease. Nature Communications, 2021, 12, 2639.	5.8	75
12	Cov-MS: A Community-Based Template Assay for Mass-Spectrometry-Based Protein Detection in SARS-CoV-2 Patients. Jacs Au, 2021, 1, 750-765.	3.6	29
13	Unipept Visualizations: an interactive visualization library for biological data. Bioinformatics, 2021, , .	1.8	1
14	Spectral Prediction Features as a Solution for the Search Space Size Problem in Proteogenomics. Molecular and Cellular Proteomics, 2021, 20, 100076.	2.5	31
15	DeepLC can predict retention times for peptides that carry as-yet unseen modifications. Nature Methods, 2021, 18, 1363-1369.	9.0	95
16	Massively parallel interrogation of protein fragment secretability using SECRiFY reveals features influencing secretory system transit. Nature Communications, 2021, 12, 6414.	5.8	5
17	Critical Assessment of MetaProteome Investigation (CAMPI): a multi-laboratory comparison of established workflows. Nature Communications, 2021, 12, 7305.	5.8	34
18	Anatomy and evolution of database search engines—a central component of mass spectrometry based proteomic workflows. Mass Spectrometry Reviews, 2020, 39, 292-306.	2.8	97

#	Article	IF	CITATIONS
19	ThermoRawFileParser: Modular, Scalable, and Cross-Platform RAW File Conversion. Journal of Proteome Research, 2020, 19, 537-542.	1.8	144
20	Precursor Intensity-Based Label-Free Quantification Software Tools for Proteomic and Multi-Omic Analysis within the Galaxy Platform. Proteomes, 2020, 8, 15.	1.7	9
21	Removing the Hidden Data Dependency of DIA with Predicted Spectral Libraries. Proteomics, 2020, 20, e1900306.	1.3	38
22	Community standards for open cell migration data. GigaScience, 2020, 9, .	3.3	12
23	Connecting MetaProteomeAnalyzer and PeptideShaker to Unipept for Seamless End-to-End Metaproteomics Data Analysis. Journal of Proteome Research, 2020, 19, 3562-3566.	1.8	11
24	COSS: A Fast and User-Friendly Tool for Spectral Library Searching. Journal of Proteome Research, 2020, 19, 2786-2793.	1.8	18
25	Unipept CLI 2.0: adding support for visualizations and functional annotations. Bioinformatics, 2020, 36, 4220-4221.	1.8	9
26	The CEP5 Peptide Promotes Abiotic Stress Tolerance, As Revealed by Quantitative Proteomics, and Attenuates the AUX/IAA Equilibrium in Arabidopsis. Molecular and Cellular Proteomics, 2020, 19, 1248-1262.	2.5	35
27	Scop3P: A Comprehensive Resource of Human Phosphosites within Their Full Context. Journal of Proteome Research, 2020, 19, 3478-3486.	1.8	19
28	Simple Peptide Quantification Approach for MS-Based Proteomics Quality Control. ACS Omega, 2020, 5, 6754-6762.	1.6	26
29	MSqRob Takes the Missing Hurdle: Uniting Intensity- and Count-Based Proteomics. Analytical Chemistry, 2020, 92, 6278-6287.	3.2	34
30	The Age of Dataâ€Driven Proteomics: How Machine Learning Enables Novel Workflows. Proteomics, 2020, 20, e1900351.	1.3	34
31	Generalized Calibration Across Liquid Chromatography Setups for Generic Prediction of Small-Molecule Retention Times. Analytical Chemistry, 2020, 92, 6571-6578.	3.2	26
32	Robust Summarization and Inference in Proteome-wide Label-free Quantification. Molecular and Cellular Proteomics, 2020, 19, 1209-1219.	2.5	37
33	DoRes within CellMissy: dose-response analysis on cell migration and related data. Bioinformatics, 2019, 35, 696-697.	1.8	1
34	Comprehensive and Empirical Evaluation of Machine Learning Algorithms for Small Molecule LC Retention Time Prediction. Analytical Chemistry, 2019, 91, 3694-3703.	3.2	64
35	A comparison of collision cross section values obtained via travelling wave ion mobility-mass spectrometry and ultra high performance liquid chromatography-ion mobility-mass spectrometry: Application to the characterisation of metabolites in rat urine. Journal of Chromatography A, 2019, 1602–386.396	1.8	34
36	Updated MSÅ ² PIP web server delivers fast and accurate MSÅ ² peak intensity prediction for multiple fragmentation methods, instruments and labeling techniques. Nucleic Acids Research, 2019, 47, W295-W299.	6.5	77

#	Article	IF	CITATIONS
37	Accurate peptide fragmentation predictions allow data driven approaches to replace and improve upon proteomics search engine scoring functions. Bioinformatics, 2019, 35, 5243-5248.	1.8	52
38	Challenges and promise at the interface of metaproteomics and genomics: an overview of recent progress in metaproteogenomic data analysis. Expert Review of Proteomics, 2019, 16, 375-390.	1.3	86
39	Bcl-2 and IP3 compete for the ligand-binding domain of IP3Rs modulating Ca2+ signaling output. Cellular and Molecular Life Sciences, 2019, 76, 3843-3859.	2.4	31
40	Unipept 4.0: Functional Analysis of Metaproteome Data. Journal of Proteome Research, 2019, 18, 606-615.	1.8	112
41	LNCipedia 5: towards a reference set of human long non-coding RNAs. Nucleic Acids Research, 2019, 47, D135-D139.	6.5	403
42	Scop3D: Online Visualization of Mutation Rates on Protein Structure. Journal of Proteome Research, 2019, 18, 765-769.	1.8	2
43	Update on the moFF Algorithm for Label-Free Quantitative Proteomics. Journal of Proteome Research, 2019, 18, 728-731.	1.8	13
44	SQANTI: extensive characterization of long-read transcript sequences for quality control in full-length transcriptome identification and quantification. Genome Research, 2018, 28, 396-411.	2.4	299
45	Analysis of Invasion Dynamics of Matrix-Embedded Cells in a Multisample Format. Methods in Molecular Biology, 2018, 1749, 79-117.	0.4	4
46	Crossâ€linked peptide identification: A computational forest of algorithms. Mass Spectrometry Reviews, 2018, 37, 738-749.	2.8	27
47	High-throughput metaproteomics data analysis with Unipept: A tutorial. Journal of Proteomics, 2018, 171, 11-22.	1.2	65
48	The online Tabloid Proteome: an annotated database of protein associations. Nucleic Acids Research, 2018, 46, D581-D585.	6.5	6
49	MPA Portable: A Stand-Alone Software Package for Analyzing Metaproteome Samples on the Go. Analytical Chemistry, 2018, 90, 685-689.	3.2	65
50	Quality control in mass spectrometryâ€based proteomics. Mass Spectrometry Reviews, 2018, 37, 697-711.	2.8	82
51	Surveillance of Myelodysplastic Syndrome via Migration Analyses of Blood Neutrophils: A Potential Prognostic Tool. Journal of Immunology, 2018, 201, 3546-3557.	0.4	17
52	The study of degradation mechanisms of glyco-engineered plant produced anti-rabies monoclonal antibodies E559 and 62-71-3. PLoS ONE, 2018, 13, e0209373.	1.1	3
53	Data-Driven Rescoring of Metabolite Annotations Significantly Improves Sensitivity. Analytical Chemistry, 2018, 90, 11636-11642.	3.2	8
54	Differences in antigenic sites and other functional regions between genotype A and G mumps virus surface proteins. Scientific Reports, 2018, 8, 13337.	1.6	22

#	Article	IF	CITATIONS
55	The mutational landscape of <i>MYCN</i> , <i>Lin28b</i> and <i>ALKF1174L</i> driven murine neuroblastoma mimics human disease. Oncotarget, 2018, 9, 8334-8349.	0.8	6
56	Protein complex analysis: From raw protein lists to protein interaction networks. Mass Spectrometry Reviews, 2017, 36, 600-614.	2.8	22
57	A Golden Age for Working with Public Proteomics Data. Trends in Biochemical Sciences, 2017, 42, 333-341.	3.7	92
58	An end-to-end software solution for the analysis of high-throughput single-cell migration data. Scientific Reports, 2017, 7, 42383.	1.6	30
59	N-terminal Proteomics Assisted Profiling of the Unexplored Translation Initiation Landscape in Arabidopsis thaliana. Molecular and Cellular Proteomics, 2017, 16, 1064-1080.	2.5	54
60	Unbiased Protein Association Study on the Public Human Proteome Reveals Biological Connections between Co-Occurring Protein Pairs. Journal of Proteome Research, 2017, 16, 2204-2212.	1.8	3
61	Noncoding after All: Biases in Proteomics Data Do Not Explain Observed Absence of IncRNA Translation Products. Journal of Proteome Research, 2017, 16, 2508-2515.	1.8	44
62	Methods to Calculate Spectrum Similarity. Methods in Molecular Biology, 2017, 1549, 75-100.	0.4	18
63	An Accessible Proteogenomics Informatics Resource for Cancer Researchers. Cancer Research, 2017, 77, e43-e46.	0.4	27
64	Mass spectrometrists should search for all peptides, but assess only the ones they care about. Nature Methods, 2017, 14, 643-644.	9.0	42
65	Computational quality control tools for mass spectrometry proteomics. Proteomics, 2017, 17, 1600159.	1.3	34
66	MAPPI-DAT: data management and analysis for protein–protein interaction data from the high-throughput MAPPIT cell microarray platform. Bioinformatics, 2017, 33, 1424-1425.	1.8	2
67	A community proposal to integrate proteomics activities in ELIXIR. F1000Research, 2017, 6, 875.	0.8	13
68	Identification of Quantitative Proteomic Differences between Mycobacterium tuberculosis Lineages with Altered Virulence. Frontiers in Microbiology, 2016, 7, 813.	1.5	34
69	Metaproteomic data analysis at a glance: advances in computational microbial community proteomics. Expert Review of Proteomics, 2016, 13, 757-769.	1.3	67
70	moFF: a robust and automated approach to extract peptide ion intensities. Nature Methods, 2016, 13, 964-966.	9.0	56
71	The impact of sequence database choice on metaproteomic results in gut microbiota studies. Microbiome, 2016, 4, 51.	4.9	124
72	Database Search Engines: Paradigms, Challenges and Solutions. Advances in Experimental Medicine and Biology, 2016, 919, 147-156.	0.8	18

#	Article	IF	CITATIONS
73	Designing biomedical proteomics experiments: state-of-the-art and future perspectives. Expert Review of Proteomics, 2016, 13, 495-511.	1.3	13
74	Public proteomics data: How the field has evolved from sceptical inquiry to the promise of in silico proteomics. EuPA Open Proteomics, 2016, 11, 42-44.	2.5	6
75	A Pipeline for Differential Proteomics in Unsequenced Species. Journal of Proteome Research, 2016, 15, 1963-1970.	1.8	10
76	Human Proteome Project Mass Spectrometry Data Interpretation Guidelines 2.1. Journal of Proteome Research, 2016, 15, 3961-3970.	1.8	158
77	Xilmass: A New Approach toward the Identification of Cross-Linked Peptides. Analytical Chemistry, 2016, 88, 9949-9957.	3.2	25
78	Up-to-Date Workflow for Plant (Phospho)proteomics Identifies Differential Drought-Responsive Phosphorylation Events in Maize Leaves. Journal of Proteome Research, 2016, 15, 4304-4317.	1.8	50
79	The Lyssavirus glycoprotein: A key to cross-immunity. Virology, 2016, 498, 250-256.	1.1	11
80	Proteome-scale Binary Interactomics in Human Cells. Molecular and Cellular Proteomics, 2016, 15, 3624-3639.	2.5	23
81	An extra dimension in protein tagging by quantifying universal proteotypic peptides using targeted proteomics. Scientific Reports, 2016, 6, 27220.	1.6	15
82	Resolution of protein structure by mass spectrometry. Mass Spectrometry Reviews, 2016, 35, 653-665.	2.8	15
83	Taking Aim at Moving Targets in Computational Cell Migration. Trends in Cell Biology, 2016, 26, 88-110.	3.6	100
84	Unsupervised Quality Assessment of Mass Spectrometry Proteomics Experiments by Multivariate Quality Control Metrics. Journal of Proteome Research, 2016, 15, 1300-1307.	1.8	15
85	Exploring the potential of public proteomics data. Proteomics, 2016, 16, 214-225.	1.3	72
86	sORFs.org: a repository of small ORFs identified by ribosome profiling. Nucleic Acids Research, 2016, 44, D324-D329.	6.5	123
87	The challenge of metaproteomic analysis in human samples. Expert Review of Proteomics, 2016, 13, 135-138.	1.3	20
88	SFINX: Straightforward Filtering Index for Affinity Purification–Mass Spectrometry Data Analysis. Journal of Proteome Research, 2016, 15, 332-338.	1.8	20
89	Pladipus Enables Universal Distributed Computing in Proteomics Bioinformatics. Journal of Proteome Research, 2016, 15, 707-712.	1.8	11
90	Ariadne's Thread: A Robust Software Solution Leading to Automated Absolute and Relative Quantification of SRM Data. Journal of Proteome Research, 2015, 14, 3779-3792.	1.8	4

#	Article	IF	CITATIONS
91	Ryanodine receptors are targeted by anti-apoptotic Bcl-XL involving its BH4 domain and Lys87 from its BH3 domain. Scientific Reports, 2015, 5, 9641.	1.6	30
92	Colonic metaproteomic signatures of active bacteria and the host in obesity. Proteomics, 2015, 15, 3544-3552.	1.3	70
93	Summarization vs Peptide-Based Models in Label-Free Quantitative Proteomics: Performance, Pitfalls, and Data Analysis Guidelines. Journal of Proteome Research, 2015, 14, 2457-2465.	1.8	44
94	Phospho-iTRAQ data article: Assessing isobaric labels for the large-scale study of phosphopeptide stoichiometry. Data in Brief, 2015, 4, 60-65.	0.5	16
95	MS ² PIP prediction server: compute and visualize MS ² peak intensity predictions for CID and HCD fragmentation. Nucleic Acids Research, 2015, 43, W326-W330.	6.5	63
96	Phospho-iTRAQ: Assessing Isobaric Labels for the Large-Scale Study Of Phosphopeptide Stoichiometry. Journal of Proteome Research, 2015, 14, 839-849.	1.8	15
97	An open data ecosystem for cell migration research. Trends in Cell Biology, 2015, 25, 55-58.	3.6	26
98	The MetaProteomeAnalyzer: A Powerful Open-Source Software Suite for Metaproteomics Data Analysis and Interpretation. Journal of Proteome Research, 2015, 14, 1557-1565.	1.8	169
99	Scop3D: Threeâ€dimensional visualization of sequence conservation. Proteomics, 2015, 15, 1448-1452.	1.3	11
100	PeptideShaker enables reanalysis of MS-derived proteomics data sets. Nature Biotechnology, 2015, 33, 22-24.	9.4	460
101	A Decoy-Free Approach to the Identification of Peptides. Journal of Proteome Research, 2015, 14, 1792-1798.	1.8	35
102	An update on LNCipedia: a database for annotated human IncRNA sequences. Nucleic Acids Research, 2015, 43, D174-D180.	6.5	298
103	iMonDB: Mass Spectrometry Quality Control through Instrument Monitoring. Journal of Proteome Research, 2015, 14, 2360-2366.	1.8	21
104	Navigating through metaproteomics data: A logbook of database searching. Proteomics, 2015, 15, 3439-3453.	1.3	128
105	The iceLogo web server and SOAP service for determining protein consensus sequences. Nucleic Acids Research, 2015, 43, W543-W546.	6.5	52
106	PepShell: Visualization of Conformational Proteomics Data. Journal of Proteome Research, 2015, 14, 1987-1990.	1.8	2
107	Managing Expectations When Publishing Tools and Methods for Computational Proteomics. Journal of Proteome Research, 2015, 14, 2002-2004.	1.8	5
108	Ten years of public proteomics data: How things have evolved, and where the next ten years should lead us. EuPA Open Proteomics, 2015, 8, 28-35.	2.5	4

#	Article	IF	CITATIONS
109	Open-Source, Platform-Independent Library and Online Scripting Environment for Accessing Thermo Scientific RAW Files. Journal of Proteome Research, 2015, 14, 4940-4943.	1.8	3
110	Limited Proteolysis Combined with Stable Isotope Labeling Reveals Conformational Changes in Protein (Pseudo)kinases upon Binding Small Molecules. Journal of Proteome Research, 2015, 14, 4179-4193.	1.8	7
111	Viewing the proteome: How to visualize proteomics data?. Proteomics, 2015, 15, 1341-1355.	1.3	32
112	An improved toolbox to unravel the plant cellular machinery by tandem affinity purification of Arabidopsis protein complexes. Nature Protocols, 2015, 10, 169-187.	5.5	160
113	JSparklines: Making tabular proteomics data come alive. Proteomics, 2015, 15, 1428-1431.	1.3	7
114	jqcML: An Open-Source Java API for Mass Spectrometry Quality Control Data in the qcML Format. Journal of Proteome Research, 2014, 13, 3484-3487.	1.8	9
115	Machine learning applications in proteomics research: How the past can boost the future. Proteomics, 2014, 14, 353-366.	1.3	52
116	Distributed computing and data storage in proteomics: Many hands make light work, and a stronger memory. Proteomics, 2014, 14, 367-377.	1.3	21
117	qcML: An Exchange Format for Quality Control Metrics from Mass Spectrometry Experiments. Molecular and Cellular Proteomics, 2014, 13, 1905-1913.	2.5	42
118	ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nature Biotechnology, 2014, 32, 223-226.	9.4	2,505
119	Introduction to opportunities and pitfalls in functional mass spectrometry based proteomics. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 12-20.	1.1	27
120	DeNovoGUI: An Open Source Graphical User Interface for <i>de Novo</i> Sequencing of Tandem Mass Spectra. Journal of Proteome Research, 2014, 13, 1143-1146.	1.8	73
121	Shedding light on black boxes in protein identification. Proteomics, 2014, 14, 1001-1005.	1.3	20
122	Toward More Transparent and Reproducible Omics Studies Through a Common Metadata Checklist and Data Publications. OMICS A Journal of Integrative Biology, 2014, 18, 10-14.	1.0	54
123	Time-resolved characterization of cAMP/PKA-dependent signaling reveals that platelet inhibition is a concerted process involving multiple signaling pathways. Blood, 2014, 123, e1-e10.	0.6	80
124	Bioinformatics for Proteomics: Opportunities at the Interface Between the Scientists, Their Experiments, and the Community. Methods in Molecular Biology, 2014, 1156, 239-248.	0.4	0
125	Crowdsourcing in proteomics: public resources lead to better experiments. Amino Acids, 2013, 44, 1129-1137.	1.2	26
126	Asn ₃ , a Reliable, Robust, and Universal Lock Mass for Improved Accuracy in LC–MS and LC–MS/MS. Analytical Chemistry, 2013, 85, 11054-11060.	3.2	13

#	Article	IF	CITATIONS
127	MS2PIP: a tool for MS/MS peak intensity prediction. Bioinformatics, 2013, 29, 3199-3203.	1.8	108
128	In praise of open research measures. Nature, 2013, 498, 170-170.	13.7	11
129	Searching for a needle in a stack of needles: challenges in metaproteomics data analysis. Molecular BioSystems, 2013, 9, 578-585.	2.9	93
130	ProteoCloud: A full-featured open source proteomics cloud computing pipeline. Journal of Proteomics, 2013, 88, 104-108.	1.2	34
131	Protein structure as a means to triage proposed <scp>PTM</scp> sites. Proteomics, 2013, 13, 1028-1035.	1.3	31
132	Pride-asap: Automatic fragment ion annotation of identified PRIDE spectra. Journal of Proteomics, 2013, 95, 89-92.	1.2	17
133	Computational proteomics pitfalls and challenges: HavanaBioinfo 2012 Workshop report. Journal of Proteomics, 2013, 87, 134-138.	1.2	19
134	Predicting Tryptic Cleavage from Proteomics Data Using Decision Tree Ensembles. Journal of Proteome Research, 2013, 12, 2253-2259.	1.8	48
135	Getting intimate with trypsin, the leading protease in proteomics. Mass Spectrometry Reviews, 2013, 32, 453-465.	2.8	164
136	Bringing proteomics into the clinic: The need for the field to finally take itself seriously. Proteomics - Clinical Applications, 2013, 7, 388-391.	0.8	13
137	About Dice, Bouldering, and Team Empowerment: Running the CompOmics Group at VIB and Ghent University, Belgium. PLoS Computational Biology, 2013, 9, e1003332.	1.5	1
138	CellMissy: a tool for management, storage and analysis of cell migration data produced in wound healing-like assays. Bioinformatics, 2013, 29, 2661-2663.	1.8	12
139	Proteome-derived Peptide Libraries to Study the Substrate Specificity Profiles of Carboxypeptidases. Molecular and Cellular Proteomics, 2013, 12, 2096-2110.	2.5	40
140	The Online Protein Processing Resource (TOPPR): a database and analysis platform for protein processing events. Nucleic Acids Research, 2013, 41, D333-D337.	6.5	17
141	LNCipedia: a database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Research, 2013, 41, D246-D251.	6.5	488
142	Resilience in the proteomics data ecosystem: How the field cares for its data. Proteomics, 2013, 13, 1548-1550.	1.3	5
143	Toward More Transparent and Reproducible Omics Studies Through a Common Metadata Checklist and Data Publications. Big Data, 2013, 1, 196-201.	2.1	5
144	Delsa Workshop IV: Launching the Quantified Human Initiative. Big Data, 2013, 1, 187-190.	2.1	4

#	Article	IF	CITATIONS
145	<scp>D</scp> â€score: A search engine independent <scp>MD</scp> â€score. Proteomics, 2013, 13, 1036-1041.	1.3	46
146	The PRoteomics IDEntification (PRIDE) Converter 2 Framework: An Improved Suite of Tools to Facilitate Data Submission to the PRIDE Database and the ProteomeXchange Consortium. Molecular and Cellular Proteomics, 2012, 11, 1682-1689.	2.5	105
147	Enabling Computational Proteomics by Public and Local Data Management Systems. Circulation: Cardiovascular Genetics, 2012, 5, 266-266.	5.1	1
148	TraML—A Standard Format for Exchange of Selected Reaction Monitoring Transition Lists. Molecular and Cellular Proteomics, 2012, 11, R111.015040.	2.5	65
149	Current methods for global proteome identification. Expert Review of Proteomics, 2012, 9, 519-532.	1.3	43
150	The Effect of Peptide Identification Search Algorithms on MS2-Based Label-Free Protein Quantification. OMICS A Journal of Integrative Biology, 2012, 16, 443-448.	1.0	3
151	The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood, 2012, 120, e73-e82.	0.6	623
152	iTRAQ Data Interpretation. Methods in Molecular Biology, 2012, 893, 501-509.	0.4	4
153	A Complex Standard for Protein Identification, Designed by Evolution. Journal of Proteome Research, 2012, 11, 5065-5071.	1.8	51
154	Integral Quantification Accuracy Estimation for Reporter Ion-based Quantitative Proteomics (iQuARI). Journal of Proteome Research, 2012, 11, 5072-5080.	1.8	25
155	Towards a human proteomics atlas. Analytical and Bioanalytical Chemistry, 2012, 404, 1069-1077.	1.9	12
156	The HUPO initiative on Model Organism Proteomes, iMOP. Proteomics, 2012, 12, 340-345.	1.3	9
157	Chromatographic retention time prediction for posttranslationally modified peptides. Proteomics, 2012, 12, 1151-1159.	1.3	49
158	Sigpep: Calculating unique peptide signature transition sets in a complete proteome background. Proteomics, 2012, 12, 1142-1146.	1.3	9
159	PRIDE Inspector: a tool to visualize and validate MS proteomics data. Nature Biotechnology, 2012, 30, 135-137.	9.4	109
160	jTraML: An Open Source Java API for TraML, the PSI Standard for Sharing SRM Transitions. Journal of Proteome Research, 2011, 10, 5260-5263.	1.8	19
161	thermo-msf-parser: An Open Source Java Library to Parse and Visualize Thermo Proteome Discoverer <i>msf</i> Files. Journal of Proteome Research, 2011, 10, 3840-3843.	1.8	40
162	A Case Study on the Comparison of Different Software Tools for Automated Quantification of Peptides. Methods in Molecular Biology, 2011, 753, 373-398.	0.4	14

#	Article	IF	CITATIONS
163	RIBAR and xRIBAR: Methods for Reproducible Relative MS/MS-based Label-Free Protein Quantification. Journal of Proteome Research, 2011, 10, 3183-3189.	1.8	21
164	Analysis of the Resolution Limitations of Peptide Identification Algorithms. Journal of Proteome Research, 2011, 10, 5555-5561.	1.8	60
165	Mass Spectrometry-Driven Proteomics: An Introduction. Methods in Molecular Biology, 2011, 753, 1-27.	0.4	6
166	Proteomics Databases and Repositories. Methods in Molecular Biology, 2011, 694, 213-227.	0.4	9
167	Bioinformatics Analysis of a <i>Saccharomyces cerevisiae</i> N-Terminal Proteome Provides Evidence of Alternative Translation Initiation and Post-Translational N-Terminal Acetylation. Journal of Proteome Research, 2011, 10, 3578-3589.	1.8	53
168	Combining quantitative proteomics data processing workflows for greater sensitivity. Nature Methods, 2011, 8, 481-483.	9.0	18
169	compomics-utilities: an open-source Java library for computational proteomics. BMC Bioinformatics, 2011, 12, 70.	1.2	86
170	A comparison of MS2â€based labelâ€free quantitative proteomic techniques with regards to accuracy and precision. Proteomics, 2011, 11, 1110-1113.	1.3	22
171	SearchGUI: An openâ€ s ource graphical user interface for simultaneous OMSSA and X!Tandem searches. Proteomics, 2011, 11, 996-999.	1.3	331
172	A posteriori quality control for the curation and reuse of public proteomics data. Proteomics, 2011, 11, 2182-2194.	1.3	29
173	A reproducibilityâ€based evaluation procedure for quantifying the differences between MS/MS peak intensity normalization methods. Proteomics, 2011, 11, 1172-1180.	1.3	7
174	A global analysis of peptide fragmentation variability. Proteomics, 2011, 11, 1181-1188.	1.3	17
175	Peptide identification quality control. Proteomics, 2011, 11, 2105-2114.	1.3	41
176	iTRAQ protein quantification: A quality $\hat{s}\in c$ ontrolled workflow. Proteomics, 2011, 11, 1125-1134.	1.3	52
177	Quality Control in Proteomics. Proteomics, 2011, 11, 1015-1016.	1.3	11
178	"4D Biology for health and disease―workshop report. New Biotechnology, 2011, 28, 291-293.	2.4	2
179	mzML—a Community Standard for Mass Spectrometry Data. Molecular and Cellular Proteomics, 2011, 10, R110.000133.	2.5	555
180	Submitting Proteomics Data to PRIDE Using PRIDE Converter. Methods in Molecular Biology, 2011, 694, 237-253.	0.4	2

#	Article	IF	CITATIONS
181	PRIDE and "Database on Demand―as Valuable Tools for Computational Proteomics. Methods in Molecular Biology, 2011, 696, 93-105.	0.4	13
182	Bioinformatics Challenges in Mass Spectrometry-Driven Proteomics. Methods in Molecular Biology, 2011, 753, 359-371.	0.4	10
183	Bioinformatics Challenges in the Proteomic Analysis of Human Plasma. Methods in Molecular Biology, 2011, 728, 333-347.	0.4	Ο
184	Data Management in Mass Spectrometry-Based Proteomics. Methods in Molecular Biology, 2011, 728, 321-332.	0.4	2
185	OLS Dialog: An open-source front end to the Ontology Lookup Service. BMC Bioinformatics, 2010, 11, 34.	1.2	13
186	Proteomics data repositories: Providing a safe haven for your data and acting as a springboard for further research. Journal of Proteomics, 2010, 73, 2136-2146.	1.2	61
187	jTraqX: A free, platform independent tool for isobaric tag quantitation at the protein level. Proteomics, 2010, 10, 1223-1225.	1.3	24
188	ms_lims, a simple yet powerful open source laboratory information management system for MSâ€driven proteomics. Proteomics, 2010, 10, 1261-1264.	1.3	73
189	Peptide and protein quantification: A map of the minefield. Proteomics, 2010, 10, 650-670.	1.3	95
190	FragmentationAnalyzer: An openâ€source tool to analyze MS/MS fragmentation data. Proteomics, 2010, 10, 1087-1090.	1.3	10
191	jmzML, an openâ€source Java API for mzML, the PSI standard for MS data. Proteomics, 2010, 10, 1332-1335.	1.3	46
192	XTandem Parser: An openâ€source library to parse and analyse X!Tandem MS/MS search results. Proteomics, 2010, 10, 1522-1524.	1.3	48
193	The Ontology Lookup Service: bigger and better. Nucleic Acids Research, 2010, 38, W155-W160.	6.5	108
194	The Proteomics Identifications database: 2010 update. Nucleic Acids Research, 2010, 38, D736-D742.	6.5	220
195	PRIDE: Data Submission and Analysis. Current Protocols in Protein Science, 2010, 60, Unit 25.4.	2.8	13
196	Using the PRIDE Proteomics Identifications Database for Knowledge Discovery and Data Analysis. Methods in Molecular Biology, 2010, 604, 297-307.	0.4	14
197	Proteomics Data Collection – 4 th ProDaC Workshop 15 August 2008, Amsterdam, The Netherlands. Proteomics, 2009, 9, 218-222.	1.3	3
198	OMSSA Parser: An openâ€source library to parse and extract data from OMSSA MS/MS search results. Proteomics, 2009, 9, 3772-3774.	1.3	31

#	Article	IF	CITATIONS
199	The PSI semantic validator: A framework to check MIAPE compliance of proteomics data. Proteomics, 2009, 9, 5112-5119.	1.3	55
200	Getting a grip on proteomics data – Proteomics Data Collection (ProDaC). Proteomics, 2009, 9, 3928-3933.	1.3	15
201	Database on Demand – An online tool for the custom generation of FASTAâ€formatted sequence databases. Proteomics, 2009, 9, 4421-4424.	1.3	28
202	A guide to the Proteomics Identifications Database proteomics data repository. Proteomics, 2009, 9, 4276-4283.	1.3	220
203	Charting online OMICS resources: A navigational chart for clinical researchers. Proteomics - Clinical Applications, 2009, 3, 18-29.	0.8	12
204	Toward a Successful Clinical Neuroproteomics The 11th HUPO Brain Proteome Project Workshop 3 March, 2009, Kolymbari, Greece. Proteomics - Clinical Applications, 2009, 3, 1012-1016.	0.8	3
205	PRIDE Converter: making proteomics data-sharing easy. Nature Biotechnology, 2009, 27, 598-599.	9.4	159
206	A HUPO test sample study reveals common problems in mass spectrometry–based proteomics. Nature Methods, 2009, 6, 423-430.	9.0	316
207	Improved visualization of protein consensus sequences by iceLogo. Nature Methods, 2009, 6, 786-787.	9.0	664
208	Algorithms and Databases. Methods in Molecular Biology, 2009, 564, 245-259.	0.4	5
209	Analysis of the experimental detection of central nervous systemâ€related genes in human brain and cerebrospinal fluid datasets. Proteomics, 2008, 8, 1138-1148.	1.3	18
210	OMSSAGUI: An openâ€source user interface component to configure and run the OMSSA search engine. Proteomics, 2008, 8, 2376-2378.	1.3	13
211	Human Proteinpedia enables sharing of human protein data. Nature Biotechnology, 2008, 26, 164-167.	9.4	155
212	Analyzing Large-Scale Proteomics Projects with Latent Semantic Indexing. Journal of Proteome Research, 2008, 7, 182-191.	1.8	41
213	The Ontology Lookup Service: more data and better tools for controlled vocabulary queries. Nucleic Acids Research, 2008, 36, W372-W376.	6.5	70
214	Peptizer, a Tool for Assessing False Positive Peptide Identifications and Manually Validating Selected Results. Molecular and Cellular Proteomics, 2008, 7, 2364-2372.	2.5	49
215	Using the Proteomics Identifications Database (PRIDE). Current Protocols in Bioinformatics, 2008, 21, Unit 13.8.	25.8	6
216	Data Standards and Controlled Vocabularies for Proteomics. Methods in Molecular Biology, 2008, 484, 279-286.	0.4	7

#	Article	IF	CITATIONS
217	PRIDE: new developments and new datasets. Nucleic Acids Research, 2007, 36, D878-D883.	6.5	124
218	The Protein Identifier Cross-Reference (PICR) service: reconciling protein identifiers across multiple source databases. BMC Bioinformatics, 2007, 8, 401.	1.2	112
219	Proteomics data validation: why all must provide data. Molecular BioSystems, 2007, 3, 518.	2.9	41
220	Large-Scale Identification of N-Terminal Peptides in the Halophilic ArchaeaHalobacteriumsalinarumandNatronomonaspharaonis. Journal of Proteome Research, 2007, 6, 2195-2204.	1.8	109
221	Annotating the human proteome: Beyond establishing a parts list. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 175-191.	1.1	32
222	MascotDatfile: An open-source library to fully parse and analyse MASCOT MS/MS search results. Proteomics, 2007, 7, 364-366.	1.3	48
223	The PSI formal document process and its implementation on the PSI website. Proteomics, 2007, 7, 2355-2357.	1.3	45
224	A la carte proteomics with an emphasis on gelâ€free techniques. Proteomics, 2007, 7, 2698-2718.	1.3	85
225	Implementation and application of a versatile clustering tool for tandem mass spectrometry data. Proteomics, 2007, 7, 3245-3258.	1.3	28
226	The minimum information about a proteomics experiment (MIAPE). Nature Biotechnology, 2007, 25, 887-893.	9.4	694
227	Human Proteome Organization Proteomics Standards Initiative. Molecular and Cellular Proteomics, 2007, 6, 1666-1667.	2.5	20
228	Human Proteome Organization Proteomics Standards Initiative: data standardization, a view on developments and policy. Molecular and Cellular Proteomics, 2007, 6, 1666-7.	2.5	3
229	Proteome-wide Characterization of N-Glycosylation Events by Diagonal Chromatography. Journal of Proteome Research, 2006, 5, 2438-2447.	1.8	57
230	Four Stage Liquid Chromatographic Selection of Methionyl Peptides for Peptide-Centric Proteome Analysis:A The Proteome of Human Multipotent Adult Progenitor Cells. Journal of Proteome Research, 2006, 5, 1415-1428.	1.8	29
231	A New Functional, Chemical Proteomics Technology To Identify Purine Nucleotide Binding Sites in Complex Proteomes. Journal of Proteome Research, 2006, 5, 3438-3445.	1.8	31
232	Improving the reliability and throughput of mass spectrometry-based proteomics by spectrum quality filtering. Proteomics, 2006, 6, 2086-2094.	1.3	76
233	Functional annotation of proteins identified in human brain during the HUPO Brain Proteome Project pilot study. Proteomics, 2006, 6, 5059-5075.	1.3	23
234	A comparison of the HUPO Brain Proteome Project pilot with other proteomics studies. Proteomics, 2006, 6, 5076-5086.	1.3	25

#	Article	IF	CITATIONS
235	Automated reprocessing pipeline for searching heterogeneous mass spectrometric data of the HUPO Brain Proteome Project pilot phase. Proteomics, 2006, 6, 5015-5029.	1.3	56
236	HUPO Brain Proteome Project: Summary of the pilot phase and introduction of a comprehensive data reprocessing strategy. Proteomics, 2006, 6, 4890-4898.	1.3	47
237	The power of cooperative investigation: Summary and comparison of the HUPO Brain Proteome Project pilot study results. Proteomics, 2006, 6, 4997-5014.	1.3	28
238	Cell_motility: a cross-platform, open source application for the study of cell motion paths. BMC Bioinformatics, 2006, 7, 289.	1.2	20
239	PRIDE: a public repository of protein and peptide identifications for the proteomics community. Nucleic Acids Research, 2006, 34, D659-D663.	6.5	254
240	Diagonal reverse-phase chromatography applications in peptide-centric proteomics: Ahead of catalogue-omics?. Analytical Biochemistry, 2005, 345, 18-29.	1.1	70
241	Caspase-specific and nonspecific in vivo protein processing during Fas-induced apoptosis. Nature Methods, 2005, 2, 771-777.	9.0	208
242	The human platelet proteome mapped by peptide-centric proteomics: A functional protein profile. Proteomics, 2005, 5, 3193-3204.	1.3	126
243	Global phosphoproteome analysis on human HepG2 hepatocytes using reversed-phase diagonal LC. Proteomics, 2005, 5, 3589-3599.	1.3	65
244	Do we want our data raw? Including binary mass spectrometry data in public proteomics data repositories. Proteomics, 2005, 5, 3501-3505.	1.3	53
245	PRIDE: The proteomics identifications database. Proteomics, 2005, 5, 3537-3545.	1.3	553
246	Data management and preliminary data analysis in the pilot phase of the HUPO Plasma Proteome Project. Proteomics, 2005, 5, 3246-3261.	1.3	53
247	DBToolkit: processing protein databases for peptide-centric proteomics. Bioinformatics, 2005, 21, 3584-3585.	1.8	148
248	Reversible labeling of cysteine-containing peptides allows their specific chromatographic isolation for non-gel proteome studies. Proteomics, 2004, 4, 897-908.	1.3	93
249	Clobal Differential Non-Gel Proteomics by Quantitative and Stable Labeling of Tryptic Peptides with Oxygen-18. Journal of Proteome Research, 2004, 3, 786-791.	1.8	125
250	Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. Nature Biotechnology, 2003, 21, 566-569.	9.4	573
251	Chromatographic Isolation of Methionine-containing Peptides for Gel-free Proteome Analysis. Molecular and Cellular Proteomics, 2002, 1, 896-903.	2.5	219
252	Protein identification based on matrix assisted laser desorption/ionization-post source decay-mass spectrometry. Electrophoresis, 2001, 22, 1645-1651.	1.3	67

#	Article	IF	CITATIONS
253	Data management and preliminary data analysis in the pilot phase of the HUPO Plasma Proteome Project. , 0, , 37-61.		1
254	Using moFF to Extract Peptide Ion Intensities from LC-MS experiments. Protocol Exchange, 0, , .	0.3	2
255	Do we want our data raw? Including binary mass spectrometry data in public proteomics data repositories. , 0, , 323-328.		0