Marco A Barranco-Jiménez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/922949/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermo-economic multi-objective optimization of solar dish-Stirling engine by implementing evolutionary algorithm. Energy Conversion and Management, 2013, 73, 370-380.	9.2	180
2	Multi-objective thermodynamic-based optimization of output power of Solar Dish-Stirling engine by implementing an evolutionary algorithm. Energy Conversion and Management, 2013, 75, 438-445.	9.2	176
3	Optimal design of a solar driven heat engine based on thermal and thermo-economic criteria. Energy Conversion and Management, 2013, 75, 635-642.	9.2	93
4	Thermoeconomic optimisation of Novikov power plant model under maximum ecological conditions. Journal of the Energy Institute, 2007, 80, 96-104.	5.3	34
5	Energetic Optimization Considering a Generalization of the Ecological Criterion in Traditional Simple-Cycle and Combined-Cycle Power Plants. Journal of Non-Equilibrium Thermodynamics, 2020, 45, 269-290.	4.2	32
6	Comparative analysis of two ecological type modes of performance for a simple energy converter. Journal of the Energy Institute, 2009, 82, 223-227.	5.3	28
7	The Role of Internal Irreversibilities in the Performance and Stability of Power Plant Models Working at Maximum <i>Ϊμ</i> -Ecological Function. Journal of Non-Equilibrium Thermodynamics, 2021, 46, 413-429.	4.2	22
8	Finite-Time Thermoeconomic Optimization of a Solar-Driven Heat Engine Model. Entropy, 2011, 13, 171-183.	2.2	21
9	Thermoeconomic optimisation of endoreversible heat engine under maximum modified ecological criterion. Journal of the Energy Institute, 2007, 80, 232-238.	5.3	19
10	Thermoeconomic Optimum Operation Conditions of a Solar-driven Heat Engine Model. Entropy, 2009, 11, 443-453.	2.2	18
11	Thermodynamic and themoeconomic optimization of isothermal endoreversible chemical engine models. Physica A: Statistical Mechanics and Its Applications, 2017, 488, 149-161.	2.6	15
12	Thermodynamic and thermoeconomic optimization of coupled thermal and chemical engines by means of an equivalent array of uncoupled endoreversible engines. European Physical Journal Plus, 2018, 133, 1.	2.6	15
13	Local Stability Analysis of a Thermo-Economic Model of a Chambadal-Novikov-Curzon-Ahlborn Heat Engine. Entropy, 2011, 13, 1584-1594.	2.2	14
14	Thermodynamic analysis of an array of isothermal endoreversible electric engines. European Physical Journal Plus, 2020, 135, 1.	2.6	14
15	Stability Analysis of an Endoreversible Heat Engine with Stefan-Boltzmann Heat Transfer Law Working in Maximum-Power-Like Regime. Open Systems and Information Dynamics, 2006, 13, 43-53.	1.2	13
16	Global Stability Analysis of a Curzon–Ahlborn Heat Engine under Different Regimes of Performance. Entropy, 2014, 16, 5796-5809.	2.2	13
17	Global stability analysis of a Curzon–Ahlborn heat engine using the Lyapunov method. Physica A: Statistical Mechanics and Its Applications, 2014, 399, 98-105. 	2.6	13
18	A nonendoreversible model for wind energy as a solarâ€driven heat engine. Journal of Applied Physics, 1996, 80, 4872-4876.	2.5	12

#	Article	IF	CITATIONS
19	Local and global stability analysis of a Curzon–Ahlborn model applied to power plants working at maximum <mml:math altimg="si33.svg" display="inline" id="d1e1219" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi></mml:math> -efficient power. Physica A: Statistical Mechanics and Its Applications, 2021, 571, 125863.	2.6	11
20	On thermodynamic optimisation of solar collector model under maximum ecological conditions. Journal of the Energy Institute, 2008, 81, 164-167.	5.3	10
21	A Proposal of Ecologic Taxes Based on Thermo-Economic Performance of Heat Engine Models. Energies, 2009, 2, 1042-1056.	3.1	10
22	Thermoeconomic Optimization of an Irreversible Novikov Plant Model under Different Regimes of Performance. Entropy, 2017, 19, 118.	2.2	10
23	Local Stability Analysis for a Thermo-Economic Irreversible Heat Engine Model under Different Performance Regimes. Entropy, 2015, 17, 8019-8030.	2.2	9
24	Possible future scenarios for atmospheric concentration of greenhouse gases: A simplified thermodynamic approach. Renewable Energy, 2009, 34, 2344-2352.	8.9	8
25	A Finite-Time Thermal Cycle Variational Optimization with a Stefan–Boltzmann Law for Three Different Criteria. Entropy, 2012, 14, 2611-2625.	2.2	5
26	An Endoreversible Thermodynamic Model Applied to the Convective Zone of the Sun. ISRN Astronomy and Astrophysics, 2012, 2012, 1-7.	0.2	1
27	The Faint Young Sun Paradox: A Simplified Thermodynamic Approach. Advances in Astronomy, 2012, 2012, 1-10.	1.1	1
28	Thermoeconomical analysis of a non-endoreversible Novikov power plant model under different regimes of performance. Journal of Physics: Conference Series, 2015, 582, 012050.	0.4	1
29	A Simple Thermodynamic Model of the Internal Convective Zone of the Earth. Entropy, 2018, 20, 985.	2.2	1
30	Optimization of heat engines using different heat transfer laws by means of the method of saving functions. Journal of Physics: Conference Series, 2021, 1723, 012066.	0.4	0