
Zhou Yasong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9229233/publications.pdf Version: 2024-02-01

7HOLL YASONC

#	Article	IF	CITATIONS
1	Synthesis of highly ordered TiO2-Al2O3 and catalytic performance of its supported NiMo for HDS of 4, 6-dimethyldibenzothiophene. Catalysis Today, 2023, 423, 112716.	4.4	4
2	Rhenium modification on NiMo/Al2O3 catalyst and effects on the hydrodesulfurization reaction route selectivity of 4,6-dimethyldibenzothiophene. Catalysis Today, 2023, 407, 281-290.	4.4	6
3	Hydrotreating of diesel fuel over in-situ nickel modified Y zeolite supported Ni-Mo-S catalyst. Catalysis Today, 2023, 407, 135-145.	4.4	6
4	A DFT investigation on the hydrodesulfurization mechanism of 4,6-dimethyldibenzothiophene over different Ni-Mo-S active sites via different direct desulfurization pathways. Fuel, 2022, 308, 121971.	6.4	12
5	SAPO-11 molecular sieves synthesized in alcohol-water concentrated gel system with improved acidity, mesoporous volume and hydroisomerization performance. Fuel, 2022, 314, 123131.	6.4	21
6	Effect of Gallium as an Additive Over Corresponding Ni–Mo/γ-Al2O3 Catalysts on the Hydrodesulfurization Performance of 4,6-DMDBT. Frontiers in Chemistry, 2022, 10, 865375.	3.6	2
7	Hydroisomerization of n-Hexadecane Over Nickel-Modified SAPO-11 Molecular Sieve-Supported NiWS Catalysts: Effects of Modification Methods. Frontiers in Chemistry, 2022, 10, 857473.	3.6	6
8	Synthesis of mesoporous TiO2-Al2O3 composites supported NiW hydrotreating catalysts and their superior catalytic performance for heavy oil hydrodenitrogenation. Fuel, 2022, 319, 123802.	6.4	18
9	Role of the solvent evaporating temperature on the NiMo/TiO2-Al2O3 catalyst and the hydrodesulfurization performance for 4,6-dimenthyldibenzothiophehe. Chemical Engineering Journal Advances, 2022, 11, 100319.	5.2	3
10	A non-noble metal supported catalyst with potential prospect for hydroisomerization of n-hexadecane: Second metal incorporated NiMe/SAPO-11 catalyst with superior hydroisomerization performance. Fuel, 2022, 324, 124517.	6.4	12
11	Small-crystal and hierarchical SAPO-11 molecular sieve synthesized via three-stage crystallization method and hydroisomerization performance of corresponding NiWS supported catalyst. Fuel, 2022, 324, 124610.	6.4	15
12	Influence of ASA composition on its supported Mo catalyst performance for the slurry-phase hydrocracking of vacuum residue. Fuel, 2022, 324, 124628.	6.4	3
13	Synthesis of nano-sized small-crystal and hierarchical SAPO-11 molecular sieves and superior catalytic performance of their NiWS-supported catalysts in hydroisomerization of n-hexadecane. Microporous and Mesoporous Materials, 2022, 343, 112025.	4.4	15
14	Competitive adsorption between sulfur- and nitrogen-containing compounds over NiMoS nanocluster: The correlations of electronegativity, morphology and molecular orbital with adsorption strength. Chemical Engineering Science, 2021, 231, 116313.	3.8	17
15	DFT insights in to the hydrodenitrogenation behavior differences between indole and quinoline. Fuel, 2021, 285, 119039.	6.4	22
16	Dual interface engineering of NiO/NiCo2O4/CoO heterojunction within graphene networks for high-performance lithium storage. Electrochimica Acta, 2021, 389, 138536.	5.2	14
17	DFT insights into the adsorption behavior of 4,6-dimethyldibenzothiophene on the Ni-Mo-S corner sites: Effect of the promoter magnetism. Applied Surface Science, 2021, 569, 150992.	6.1	5
18	Synthesis of Nickel In Situ Modified SAPO-11 Molecular Sieves and Hydroisomerization Performance of Their NiWS Supported Catalysts. Frontiers in Chemistry, 2021, 9, 765573.	3.6	13

ZHOU YASONG

#	Article	IF	CITATIONS
19	Substitution of Sulfur Atoms on Ni-Mo-S by Ammonia – A DFT Study. Catalysis Today, 2020, 353, 17-25.	4.4	11
20	Synthesis of novel NiMo catalysts supported on highly ordered TiO2-Al2O3 composites and their superior catalytic performance for 4,6-dimethyldibenzothiophene hydrodesulfurization. Applied Catalysis B: Environmental, 2020, 268, 118428.	20.2	50
21	A promising catalyst for hydrodesulfurization: Ni2P – A DFT study. Catalysis Today, 2020, 353, 39-46.	4.4	16
22	DFT insights into the stacking effects on HDS of 4,6-DMDBT on Ni-Mo-S corner sites. Fuel, 2020, 280, 118669.	6.4	35
23	Synthesis of Ni-Modified ZSM-5 Zeolites and Their Catalytic Performance in n-Octane Hydroconversion. Frontiers in Chemistry, 2020, 8, 586445.	3.6	19
24	Synthesis and catalytic performance of a small crystal NaY zeolite with high SiO ₂ /Al ₂ O ₃ ratio. RSC Advances, 2019, 9, 20528-20535.	3.6	17
25	Synthesis and characterization of Zr incorporated small crystal size Y zeolite supported NiW catalysts for hydrocracking of vacuum gas oil. Fuel, 2019, 237, 597-605.	6.4	39
26	Effects of Ga- and P-modified USY-based NiMoS catalysts on ultra-deep hydrodesulfurization for FCC diesels. Catalysis Today, 2018, 305, 171-181.	4.4	44
27	Substituent effects of 4,6-DMDBT on direct hydrodesulfurization routes catalyzed by Ni-Mo-S active nanocluster—A theoretical study. Catalysis Today, 2018, 305, 28-39.	4.4	31
28	Hydrodesulfurization of 4,6-dimethyldibenzothiophene over NiMo sulfide catalysts supported on meso-microporous Y zeolite with different mesopore sizes. Applied Catalysis B: Environmental, 2018, 238, 212-224.	20.2	110
29	Gallium Modified HUSY Zeolite as an Effective Coâ€support for NiMo Hydrodesulfurization Catalyst and the Catalyst's High Isomerization Selectivity, Chemistry - A European Journal, 2017, 23, 9369-9382. Catalytic characteristics of active corner sites in Co <mmitment< td=""><td>3.3</td><td>17</td></mmitment<>	3.3	17
30	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:mrow><mml:mtext></mml:mtext></mml:mrow> Mo <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:mtext></mml:mtext></mml:mrow>S nanostructure hydrodesulfurization – A mechanism study based on DFT calculations. Journal of Catalysis, 2017, 345,</mml:math 	6.2	58
31	4,6-Dimethyldibenzothiophene Hydrodesulfurization on Nickel-Modified USY-Supported NiMoS Catalysts: Effects of Modification Method. Energy & Fuels, 2017, 31, 7445-7455.	5.1	51
32	Synthesis of NiMo Catalysts Supported on Gallium-Containing Mesoporous Y Zeolites with Different Gallium Contents and Their High Activities in the Hydrodesulfurization of 4,6-Dimethyldibenzothiophene. ACS Catalysis, 2017, 7, 7665-7679.	11.2	76
33	Inhibiting effects of nitrogen compounds on deep hydrodesulfurization of straight-run gas oil over a NiW/Al2O3 catalyst. Fuel, 2017, 188, 401-407.	6.4	35
34	Effect of direct synthesis Al–SBA-15 supports on the morphology and catalytic activity of the NiMoS phase in HDS of DBT. RSC Advances, 2016, 6, 106680-106689.	3.6	24
35	Effect of morphology properties of NiW catalysts on hydrodesulfurization for individual sulfur compounds in fluid catalytic cracking diesel. Fuel Processing Technology, 2014, 118, 200-207.	7.2	52