Daniel L Swain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9228933/publications.pdf Version: 2024-02-01

		257101	433756
32	4,160	24	31
papers	citations	h-index	g-index
34	34	34	5284
all docs	docs citations	times ranked	citing authors

DANIEL L SWAIN

#	Article	IF	CITATIONS
1	Anthropogenic warming has increased drought risk in California. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3931-3936.	3.3	1,023
2	Increasing precipitation volatility in twenty-first-century California. Nature Climate Change, 2018, 8, 427-433.	8.1	565
3	Quantifying the influence of global warming on unprecedented extreme climate events. Proceedings of the United States of America, 2017, 114, 4881-4886.	3.3	451
4	Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature, 2015, 522, 465-469.	13.7	445
5	Climate change is increasing the likelihood of extreme autumn wildfire conditions across California. Environmental Research Letters, 2020, 15, 094016.	2.2	322
6	Explaining Extreme Events of 2013 from a Climate Perspective. Bulletin of the American Meteorological Society, 2014, 95, S1-S104.	1.7	180
7	Trends in atmospheric patterns conducive to seasonal precipitation and temperature extremes in California. Science Advances, 2016, 2, e1501344.	4.7	150
8	Increased Flood Exposure Due to Climate Change and Population Growth in the United States. Earth's Future, 2020, 8, e2020EF001778.	2.4	105
9	A tale of two California droughts: Lessons amidst record warmth and dryness in a region of complex physical and human geography. Geophysical Research Letters, 2015, 42, 9999.	1.5	97
10	Attributing Extreme Events to Climate Change: A New Frontier in a Warming World. One Earth, 2020, 2, 522-527.	3.6	83
11	Climate change increases risk of extreme rainfall following wildfire in the western United States. Science Advances, 2022, 8, eabm0320.	4.7	83
12	Recent amplification of the North American winter temperature dipole. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9911-9928.	1.2	67
13	An extremeness threshold determines the regional response of floods to changes in rainfall extremes. Communications Earth & Environment, 2021, 2, .	2.6	67
14	Future precipitation increase from very high resolution ensemble downscaling of extreme atmospheric river storms in California. Science Advances, 2020, 6, eaba1323.	4.7	65
15	A Shorter, Sharper Rainy Season Amplifies California Wildfire Risk. Geophysical Research Letters, 2021, 48, e2021GL092843.	1.5	55
16	Characterizing the Spatial Scales of Extreme Daily Precipitation in the United States. Journal of Climate, 2018, 31, 8023-8037.	1.2	44
17	On the Connection Between Global Hydrologic Sensitivity and Regional Wet Extremes. Geophysical Research Letters, 2018, 45, 11,343.	1.5	40
18	Spatial Dependence of Floods Shaped by Spatiotemporal Variations in Meteorological and Land‧urface Processes. Geophysical Research Letters, 2020, 47, e2020GL088000.	1.5	40

DANIEL L SWAIN

#	Article	IF	CITATIONS
19	Ridging Associated with Drought across the Western and Southwestern United States: Characteristics, Trends, and Predictability Sources. Journal of Climate, 2020, 33, 2485-2508.	1.2	38
20	Recent Warming of Landfalling Atmospheric Rivers Along the West Coast of the United States. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6810-6826.	1.2	35
21	Population exposure to pre-emptive de-energization aimed at averting wildfires in Northern California. Environmental Research Letters, 2020, 15, 094046.	2.2	34
22	Remote Linkages to Anomalous Winter Atmospheric Ridging Over the Northeastern Pacific. Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,194.	1.2	33
23	Increasing importance of temperature as a contributor to the spatial extent of streamflow drought. Environmental Research Letters, 2021, 16, 024038.	2.2	30
24	Increasing co-occurrence of fine particulate matter and ground-level ozone extremes in the western United States. Science Advances, 2022, 8, eabi9386.	4.7	29
25	Inter-model agreement on projected shifts in California hydroclimate characteristics critical to water management. Climatic Change, 2020, 162, 1493-1513.	1.7	23
26	Moisture―Versus Windâ€Dominated Flavors of Atmospheric Rivers. Geophysical Research Letters, 2020, 47, e2020GL090042.	1.5	13
27	Evaluation of Nonhydrostatic Simulations of Northeast Pacific Atmospheric Rivers and Comparison to in Situ Observations. Monthly Weather Review, 2015, 143, 3556-3569.	0.5	12
28	Simulating and Evaluating Atmospheric Riverâ€Induced Precipitation Extremes Along the U.S. Pacific Coast: Case Studies From 1980–2017. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031554.	1.2	12
29	Toward a Resilient Global Society: Air, Sea Level, Earthquakes, and Weather. Earth's Future, 2019, 7, 854-864.	2.4	7
30	Using Large Ensembles to Identify Regions of Systematic Biases in Moderateâ€ŧoâ€Heavy Daily Precipitation. Geophysical Research Letters, 2021, 48, e2020GL092026.	1.5	6
31	Large-Scale Environments of Successive Atmospheric River Events Leading to Compound Precipitation Extremes in California. Journal of Climate, 2022, 35, 1515-1536.	1.2	6
32	Understanding the Drivers, Impacts, and Predictability of Connected Floods and Droughts. , 2021, , .		0