Longfei Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9228715/publications.pdf Version: 2024-02-01

LONCEEL CHANC

#	Article	IF	CITATIONS
1	Soft Actuators Based On Carbon Nanomaterials. ChemPlusChem, 2022, 87, e202100437.	1.3	13
2	Effect of doping polyethylene oxide on the properties of Nafion-IPMC actuators. Functional Materials Letters, 2022, 15, .	0.7	2
3	Performance Enhancement of Ionic Polymer-Metal Composite Actuators with Polyethylene Oxide. Polymers, 2022, 14, 80.	2.0	9
4	Bistable sound insulator with an abrupt stiffness shift using magnetic-coupled dielectric elastomer actuator. Smart Materials and Structures, 2022, 31, 065012.	1.8	3
5	Multi-physical modeling and fabrication of high-performance IPMC actuators with serrated interface. Smart Materials and Structures, 2022, 31, 095023.	1.8	2
6	A novel strategy to enhance the generating power of ionic polymer metal composites through magnetoelectricity. Smart Materials and Structures, 2021, 30, 065013.	1.8	4
7	Lightâ€Driven Selfâ€Oscillating Actuators with Phototactic Locomotion Based on Black Phosphorus Heterostructure. Angewandte Chemie, 2021, 133, 20674-20680.	1.6	3
8	Lightâ€Driven Selfâ€Oscillating Actuators with Phototactic Locomotion Based on Black Phosphorus Heterostructure. Angewandte Chemie - International Edition, 2021, 60, 20511-20517.	7.2	82
9	Hierarchical Structure Fabrication of IPMC Strain Sensor With High Sensitivity. Frontiers in Materials, 2021, 8, .	1.2	3
10	Experimental investigation on the physical parameters of ionic polymer metal composites sensors for humidity perception. Sensors and Actuators B: Chemical, 2021, 345, 130421.	4.0	18
11	Progress of low-frequency sound absorption research utilizing intelligent materials and acoustic metamaterials. RSC Advances, 2021, 11, 37784-37800.	1.7	20
12	Prolonged Working Time in Air of Ionic Polymer-Metal Composite Actuators with Polyethylene Oxide [*] ., 2021, , .		0
13	An Autonomous Soft Actuator with Lightâ€Driven Selfâ€Sustained Wavelike Oscillation for Phototactic Self‣ocomotion and Power Generation. Advanced Functional Materials, 2020, 30, 1908842.	7.8	100
14	Grapheneâ€Based Bimorph Actuators with Dualâ€Response and Largeâ€Deformation by a Simple Method. Macromolecular Materials and Engineering, 2019, 304, 1800688.	1.7	22
15	High-performance ionic polymer–metal composite actuators fabricated with microneedle roughening. Smart Materials and Structures, 2019, 28, 015007.	1.8	13
16	IPMC Actuation Mechanisms and Multi-physical Modeling. , 2019, , 455-502.		0
17	Ionic polymer with single-layered electrodes: a novel strategy for ionic actuator design. Smart Materials and Structures, 2018, 27, 105046.	1.8	13
18	A powerful dual-responsive soft actuator and photo-to-electric generator based on graphene micro-gasbags for bioinspired applications. Journal of Materials Chemistry B, 2018, 6, 5031-5038.	2.9	42

LONGFEI CHANG

#	Article	IF	CITATIONS
19	Rough interface in IPMC: modeling and its influence analysis. Smart Materials and Structures, 2018, 27, 075055.	1.8	12
20	Electrically and Sunlightâ€Driven Actuator with Versatile Biomimetic Motions Based on Rolled Carbon Nanotube Bilayer Composite. Advanced Functional Materials, 2017, 27, 1704388.	7.8	211
21	A multi-physical model of actuation response in dielectric gels. Smart Materials and Structures, 2016, 25, 125032.	1.8	1
22	Effects of cation on electrical responses of ionic polymer-metal composite sensors at various ambient humidities. Journal of Applied Physics, 2016, 120, .	1.1	25
23	An easily fabricated high performance ionic polymer based sensor network. Applied Physics Letters, 2016, 109, .	1.5	20
24	Application-oriented simplification of actuation mechanism and physical model for ionic polymer-metal composites. Journal of Applied Physics, 2016, 120, .	1.1	15
25	Multi-physical model of cation and water transport in ionic polymer-metal composite sensors. Journal of Applied Physics, 2016, 119, .	1.1	31
26	The effect of ambient humidity on the electrical response of ion-migration-based polymer sensor with various cations. Smart Materials and Structures, 2016, 25, 055024.	1.8	17
27	Mass and charge transport in IPMC actuators with fractal interfaces. Proceedings of SPIE, 2016, , .	0.8	0
28	Preparation and characterization of sulfonated carbon nanotube/Nafion IPMC actuators. , 2016, , .		3
29	Preparation and characterization of water-soluble carbon nanotube reinforced Nafion membranes and so-based ionic polymer metal composite actuators. Smart Materials and Structures, 2016, 25, 095006.	1.8	31
30	Effects of surface roughening of Nafion 117 on the mechanical and physicochemical properties of ionic polymer–metal composite (IPMC) actuators. Smart Materials and Structures, 2016, 25, 085012.	1.8	25
31	Influence of Ambient Humidity on the Voltage Response of Ionic Polymer–Metal Composite Sensor. Journal of Physical Chemistry B, 2016, 120, 3215-3225.	1.2	34
32	Effect of temperature on the electromechanical actuation of viscoelastic dielectric elastomers. Europhysics Letters, 2015, 112, 27006.	0.7	6
33	Aided manufacturing techniques and applications in optics and manipulation for ionic polymer-metal composites as soft sensors and actuators. Journal of Polymer Engineering, 2015, 35, 611-626.	0.6	12
34	Electromechanical performance of ionic polymer-metal composite under electrode constraint. Journal of Reinforced Plastics and Composites, 2015, 34, 1136-1143.	1.6	2
35	Comparative experimental investigation on the actuation mechanisms of ionic polymer–metal composites with different backbones and water contents. Journal of Applied Physics, 2014, 115, 124903.	1.1	33
36	Effects of surface roughening on the mass transport and mechanical properties of ionic polymer-metal composite. Journal of Applied Physics, 2014, 115, .	1.1	17

LONGFEI CHANG

#	Article	IF	CITATIONS
37	Effects of preparation steps on the physical parameters and electromechanical properties of IPMC actuators. Smart Materials and Structures, 2014, 23, 125015.	1.8	29
38	Influence of additives on the properties of casting nafion membranes and SOâ€based ionic polymer–Metal composite actuators. Polymer Engineering and Science, 2014, 54, 818-830.	1.5	21
39	Water content criterion for relaxation deformation of Nafion based ionic polymer metal composites doped with alkali cations. Applied Physics Letters, 2014, 105, .	1.5	36
40	Temperature dependence of the dielectric constant of acrylic dielectric elastomer. Applied Physics A: Materials Science and Processing, 2013, 110, 511-515.	1.1	52
41	Multiphysics of ionic polymer–metal composite actuator. Journal of Applied Physics, 2013, 114, .	1.1	54
42	Physical interpretation of deformation evolvement with water content of ionic polymer-metal composite actuator. Journal of Applied Physics, 2013, 114, .	1.1	31
43	A structure model for Ionic Polymer-Metal Composite (IPMC). , 2012, , .		2
44	Manufacturing process and electrode properties of palladium-electroded ionic polymer–metal composite. Smart Materials and Structures, 2012, 21, 065018.	1.8	49
45	NMR study on mechanisms of ionic polymer-metal composites deformation with water content. Europhysics Letters, 2011, 96, 27005.	0.7	17
46	Influence of fabrication process steps on Pd-IPMC electrode morphologies and mechano-electrical properties. Proceedings of SPIE, 2011, , .	0.8	5
47	Dynamic model of ion and water transport in ionic polymer-metal composites. AIP Advances, 2011, 1, 040702.	0.6	31