
Sudhir Agrawal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9228435/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antisense oligonucleotides: towards clinical trials. Trends in Biotechnology, 1996, 14, 376-387.	4.9	262
2	Complement Activation and Hemodynamic Changes Following Intravenous Administration of Phosphorothioate Oligonucleotides in the Monkey. Antisense Research and Development, 1994, 4, 201-206.	3.3	239
3	Efficient methods for attaching non-radioactive labels to the 5′ ends of synthetic oligodeoxyribonucleotides. Nucleic Acids Research, 1986, 14, 6227-6245.	6.5	225
4	MDM2 Is a Negative Regulator of p21 , Independent of p53. Journal of Biological Chemistry, 2004, 279, 16000-16006.	1.6	223
5	Antisense therapeutics. Current Opinion in Chemical Biology, 1998, 2, 519-528.	2.8	212
6	Specific removal of the nonsense mutation from the mdx dystrophin mRNA using antisense oligonucleotides. Neuromuscular Disorders, 1999, 9, 330-338.	0.3	190
7	In vivo studies with antisense oligonucleotides. Trends in Pharmacological Sciences, 1997, 18, 12-18.	4.0	180
8	Antisense therapy targeting MDM2 oncogene in prostate cancer: Effects on proliferation, apoptosis, multiple gene expression, and chemotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11636-11641.	3.3	179
9	Effect of different chemically modified oligodeoxynucleotides on immune stimulation. Biochemical Pharmacology, 1996, 51, 173-182.	2.0	167
10	Loss of XIAP protein expression by RNAi and antisense approaches sensitizes cancer cells to functionally diverse chemotherapeutics. Oncogene, 2004, 23, 8105-8117.	2.6	165
11	Importance of nucleotide sequence and chemical modifications of antisense oligonucleotides. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1489, 53-67.	2.4	160
12	Preclinical Characterization of AEG35156/GEM 640, a Second-Generation Antisense Oligonucleotide Targeting X-Linked Inhibitor of Apoptosis. Clinical Cancer Research, 2006, 12, 5231-5241.	3.2	136
13	Antisense oligonucleotides as antiviral agents. Trends in Biotechnology, 1992, 10, 152-158.	4.9	135
14	Absorption, tissue distribution and in vivo stability in rats of a hybrid antisense oligonucleotide following oral administration. Biochemical Pharmacology, 1995, 50, 571-576.	2.0	133
15	Antisense therapeutics: is it as simple as complementary base recognition?. Trends in Molecular Medicine, 2000, 6, 72-81.	2.6	125
16	Pharmacokinetics of an anti—human immunodeficiency virus antisense oligodeoxynucleotide phosphorothioate (GEM 91) in HIV-infected subjects*. Clinical Pharmacology and Therapeutics, 1995, 58, 44-53.	2.3	122
17	Pharmacokinetics and tissue distribution in rats of an oligodeoxynucleotide phosphorothioate (GEM) Tj ETQq1 1 Pharmacology, 1995, 49, 929-939.	. 0.784314 2.0	rgBT /Over 121
18	Antisense and siRNA as agonists of Toll-like receptors. Nature Biotechnology, 2004, 22, 1533-1537.	9.4	119

#	Article	IF	CITATIONS
19	Dual Blockade of Cyclic AMP Response Element- (CRE) and AP-1-directed Transcription by CRE-transcription Factor Decoy Oligonucleotide. Journal of Biological Chemistry, 1999, 274, 1573-1580.	1.6	113
20	Stabilization of E2F1 protein by MDM2 through the E2F1 ubiquitination pathway. Oncogene, 2005, 24, 7238-7247.	2.6	111
21	Oligodeoxynucleoside methylphosphonates: synthesis and enzymic degradation. Tetrahedron Letters, 1987, 28, 3539-3542.	0.7	109
22	Self-stabilized antisense oligodeoxynucleotide phosphorothioates: properties and anti-HIV activity. Nucleic Acids Research, 1993, 21, 2729-2735.	6.5	103
23	Survivin inhibition induces human neural tumor cell death through caspase-independent and -dependent pathways. Journal of Neurochemistry, 2008, 79, 426-436.	2.1	100
24	In vivo stability, disposition and metabolism of a "hybrid―oligonucleotide phosphorothioate in rats. Biochemical Pharmacology, 1995, 50, 545-556.	2.0	97
25	Immunomodulatory oligonucleotides containing a cytosine-phosphate-2'-deoxy-7-deazaguanosine motif as potent Toll-like receptor 9 agonists. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6925-6930.	3.3	95
26	Pattern and Kinetics of Cytokine Production Following Administration of Phosphorothioate Oligonucleotides in Mice. Oligonucleotides, 1997, 7, 495-502.	4.4	93
27	Antisense oligonucleotides targeting the epidermal growth factor receptor inhibit proliferation, induce apoptosis, and cooperate with cytotoxic drugs in human cancer cell lines. International Journal of Cancer, 2001, 93, 172-178.	2.3	87
28	Thermal stress–induced HSP70 mediates protection against intrapancreatic trypsinogen activation and acute pancreatitis in rats. Gastroenterology, 2002, 122, 156-165.	0.6	87
29	Experimental therapy of human prostate cancer by inhibiting MDM2 expression with novel mixed-backbone antisense oligonucleotides: In vitro and in vivo activities and mechanisms. Prostate, 2003, 54, 194-205.	1.2	86
30	Novel Toll-Like Receptor 9 Agonist Induces Epidermal Growth Factor Receptor (EGFR) Inhibition and Synergistic Antitumor Activity with EGFR Inhibitors. Clinical Cancer Research, 2006, 12, 577-583.	3.2	86
31	Conjugation of Ligands at the 5â€~-End of CpG DNA Affects Immunostimulatory Activity. Bioconjugate Chemistry, 2002, 13, 966-974.	1.8	84
32	Antisense and/or Immunostimulatory Oligonucleotide Therapeutics. Current Cancer Drug Targets, 2001, 1, 197-209.	0.8	83
33	Ubiquitous Induction of p53 in Tumor Cells by Antisense Inhibition of MDM2 Expression. Molecular Medicine, 1999, 5, 21-34.	1.9	78
34	Accessible 5′-end of CpG-containing Phosphorothioate Oligodeoxynucleotides is essential for immunostimulatory activity. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 2585-2588.	1.0	78
35	Stereo-enriched phosphorothioate oligodeoxynucleotides: synthesis, biophysical and biological properties. Bioorganic and Medicinal Chemistry, 2000, 8, 275-284.	1.4	77
36	Medicinal chemistry and therapeutic potential of CpG DNA. Trends in Molecular Medicine, 2002, 8, 114-121.	3.5	76

#	Article	IF	CITATIONS
37	Heat shock protein 70 prevents secretagogue-induced cell injury in the pancreas by preventing intracellular trypsinogen activation. Journal of Clinical Investigation, 2000, 106, 81-89.	3.9	76
38	Mixed Backbone Oligonucleotides: Improvement in Oligonucleotide-induced Toxicity <i>In Vivo</i> . Oligonucleotides, 1998, 8, 135-139.	4.4	75
39	Pharmacokinetics, Biodistribution, and Stability of Capped Oligodeoxynucleotide Phosphorothioates in Mice. Antisense Research and Development, 1993, 3, 277-284.	3.3	73
40	Cooperative Inhibition of Renal Cancer Growth by Anti-Epidermal Growth Factor Receptor Antibody and Protein Kinase A Antisense Oligonucleotide. Journal of the National Cancer Institute, 1998, 90, 1087-1998.	3.0	72
41	Effect of chemical modifications of cytosine and guanine in a cpg-motif of oligonucleotides: structure–immunostimulatory activity relationships. Bioorganic and Medicinal Chemistry, 2001, 9, 807-813.	1.4	71
42	'Immunomers'novel 3'-3'-linked CpG oligodeoxyribonucleotides as potent immunomodulatory agents. Nucleic Acids Research, 2002, 30, 4460-4469.	6.5	70
43	Stabilized immune modulatory RNA compounds as agonists of Toll-like receptors 7 and 8. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13750-13755.	3.3	69
44	A novelMDM2 anti-sense oligonucleotide has anti-tumor activity and potentiates cytotoxic drugs acting by different mechanisms in human colon cancer. International Journal of Cancer, 2000, 88, 804-809.	2.3	68
45	A Toll-Like Receptor 7, 8, and 9 Antagonist Inhibits Th1 and Th17 Responses and Inflammasome Activation in a Model of IL-23-Induced Psoriasis. Journal of Investigative Dermatology, 2013, 133, 1777-1784.	0.3	66
46	TLR9 Agonist Protects Mice from Radiation-Induced Gastrointestinal Syndrome. PLoS ONE, 2012, 7, e29357.	1.1	65
47	TLR9 agonist acts by different mechanisms synergizing with bevacizumab in sensitive and cetuximab-resistant colon cancer xenografts. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12468-12473.	3.3	63
48	Divergent synthetic nucleotide motif recognition pattern: design and development of potent immunomodulatory oligodeoxyribonucleotide agents with distinct cytokine induction profiles. Nucleic Acids Research, 2003, 31, 2393-2400.	6.5	62
49	Design, synthesis and biological evaluation of novel antagonist compounds of Toll-like receptors 7, 8 and 9. Nucleic Acids Research, 2013, 41, 3947-3961.	6.5	62
50	Large-Scale Synthesis, Purification, and Analysis of Oligodeoxynucleotide Phosphorothioates. Antisense Research and Development, 1994, 4, 185-199.	3.3	61
51	Perspectives in antisense therapeutics. , 1997, 76, 151-160.		61
52	Stabilization of the MDM2 Oncoprotein by Mutant p53. Journal of Biological Chemistry, 2001, 276, 6874-6878.	1.6	60
53	Radiosensitization by Antisense Anti-MDM2 Mixed-Backbone Oligonucleotide in in Vitro and in Vivo Human Cancer Models. Clinical Cancer Research, 2004, 10, 1263-1273.	3.2	60
54	Study of antisense oligonucleotide phosphorothioates containing segments of oligodeoxynucleotides and 2â€2-o- methyloligoribonucleotides. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 2929-2934.	1.0	59

#	Article	IF	CITATIONS
55	A dinucleotide motif in oligonucleotides shows potent immunomodulatory activity and overrides species-specific recognition observed with CpG motif. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14303-14308.	3.3	58
56	Oral administration of a synthetic agonist of Toll-like receptor 9 potently modulates peanut-induced allergy in mice. Journal of Allergy and Clinical Immunology, 2007, 120, 631-637.	1.5	58
57	Site of chemical modifications in CpG containing phosphorothiate oligodeoxynucleotide modulates its immunostimulatory activity. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 3453-3458.	1.0	56
58	Application of XIAP Antisense to Cancer and Other Proliferative Disorders: Development of AEG35156/ GEM(R)640. Annals of the New York Academy of Sciences, 2005, 1058, 215-234.	1.8	56
59	Chemotherapy and chemosensitization of non–small cell lung cancer with a novel immunomodulatory oligonucleotide targeting Toll-like receptor 9. Molecular Cancer Therapeutics, 2006, 5, 1585-1592.	1.9	56
60	Modifications Incorporated in CpG Motifs of Oligodeoxynucleotides Lead to Antagonist Activity of Toll-like Receptors 7 and 9. Journal of Medicinal Chemistry, 2009, 52, 5108-5114.	2.9	56
61	Chemosensitization and Radiosensitization of Human Cancer by Antisense Anti-MDM2 Oligonucleotides. Annals of the New York Academy of Sciences, 2003, 1002, 217-235.	1.8	54
62	A novel antagonist of Toll-like receptors 7, 8 and 9 suppresses lupus disease-associated parameters in NZBW/F1 mice. Autoimmunity, 2013, 46, 419-428.	1.2	54
63	Role of toll-like receptors in the pathogenesis of dystrophin-deficient skeletal and heart muscle. Human Molecular Genetics, 2014, 23, 2604-2617.	1.4	54
64	Novel Antisense Anti-MDM2 Mixed-Backbone Oligonucleotides: Proof of Principle, In Vitro and In Vivo Activities, and Mechanisms. Current Cancer Drug Targets, 2005, 5, 43-49.	0.8	53
65	Solid-phase stereoselective synthesis of oligonucleoside phosphorothioates: The nucleoside bicyclic oxazaphospholidines as novel synthons. Tetrahedron Letters, 1998, 39, 2491-2494.	0.7	52
66	RAGE Enhances TLR Responses through Binding and Internalization of RNA. Journal of Immunology, 2016, 197, 4118-4126.	0.4	51
67	An In Situ Autologous Tumor Vaccination with Combined Radiation Therapy and TLR9 Agonist Therapy. PLoS ONE, 2012, 7, e38111.	1.1	51
68	Ion-exchange high-performance liquid chromatography analysis of oligodeoxyribonucleotide phosphorothioates. Analytical Biochemistry, 1992, 200, 342-346.	1.1	49
69	Immunostimulatory activity of CpG containing phosphorothioate oligodeoxynucleotide is modulated by modification of a single deoxynucleoside. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 1051-1054.	1.0	48
70	Anti-Tumor Efficacy of a Novel Antisense Anti-MDM2 Mixed-Backbone Oligonucleotide in Human Colon Cancer Models: p53-Dependent and p53-Independent Mechanisms. Molecular Medicine, 2002, 8, 185-199.	1.9	48
71	Combined Targeting of Epidermal Growth Factor Receptor and MDM2 by Gefitinib and Antisense MDM2 Cooperatively Inhibit Hormone-Independent Prostate Cancer. Clinical Cancer Research, 2004, 10, 4858-4864.	3.2	48
72	In VivoMetabolic Profile of a Phosphorothioate Oligodeoxyribonucleotide. Oligonucleotides, 1997, 7, 159-165.	4.4	47

#	Article	IF	CITATIONS
73	Potent CpG oligonucleotides containing phosphodiester linkages: in vitro and in vivo immunostimulatory properties. Biochemical and Biophysical Research Communications, 2002, 297, 83-90.	1.0	47
74	Toll-like Receptor 9 Agonist IMO Cooperates with Cetuximab in <i>K</i> - <i>Ras</i> Mutant Colorectal and Pancreatic Cancers. Clinical Cancer Research, 2011, 17, 6531-6541.	3.2	47
75	Immunostimulatory activity of CpG oligonucleotides containing non-ionic methylphosphonate linkages. Bioorganic and Medicinal Chemistry, 2001, 9, 2803-2808.	1.4	45
76	Modulation of immunostimulatory activity of CpG oligonucleotides by site-Specific deletion of nucleobases. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2263-2267.	1.0	44
77	Treatment of Mammary Carcinomas in HER-2 Transgenic Mice through Combination of Genetic Vaccine and an Agonist of Toll-Like Receptor 9. Clinical Cancer Research, 2009, 15, 1575-1584.	3.2	44
78	Effects of synthetic oligonucleotides on human complement and coagulationâ^—. Biochemical Pharmacology, 1997, 53, 1123-1132.	2.0	43
79	The Multiple Inhibitory Mechanisms of GEM 91®, agagAntisense Phosphorothioate Oligonucleotide, for Human Immunodeficiency Virus Type 1. AIDS Research and Human Retroviruses, 1997, 13, 545-554.	0.5	42
80	Modulation of Toll-like Receptor 9 Responses through Synthetic Immunostimulatory Motifs of DNA. Annals of the New York Academy of Sciences, 2003, 1002, 30-42.	1.8	42
81	Oligodeoxyribonucleotide-Based Antagonists for Toll-Like Receptors 7 and 9. Journal of Medicinal Chemistry, 2009, 52, 551-558.	2.9	41
82	Modulation of the tumor microenvironment by intratumoral administration of IMO-2125, a novel TLR9 agonist, for cancer immunotherapy. International Journal of Oncology, 2018, 53, 1193-1203.	1.4	41
83	Toxicologic Effects of an Oligodeoxynucleotide Phosphorothioate and Its Analogs Following Intravenous Administration in Rats. Oligonucleotides, 1997, 7, 575-584.	4.4	39
84	Mixed-Backbone oligonucleotides as second-generation antisense agents with reduced phosphorothioate-related side effects. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 3269-3274.	1.0	39
85	EGF-related peptides are involved in the proliferation and survival of MDA-MB-468 human breast carcinoma cells. , 1999, 80, 589-594.		39
86	Secondary structures in CpG oligonucleotides affect immunostimulatory activity. Biochemical and Biophysical Research Communications, 2003, 306, 948-953.	1.0	39
87	Requirement of nucleobase proximal to CpG dinucleotide for immunostimulatory activity of synthetic CpG DNA. Bioorganic and Medicinal Chemistry, 2003, 11, 459-464.	1.4	38
88	Peptide Conjugation at the 5′-End of Oligodeoxynucleotides Abrogates Toll-Like Receptor 9-Mediated Immune Stimulatory Activity. Bioconjugate Chemistry, 2010, 21, 39-45.	1.8	38
89	Cellular Distribution of Phosphorothioate Oligonucleotide Following Intravenous Administration in Mice. Oligonucleotides, 1998, 8, 451-458.	4.4	37
90	Design, Synthesis, and Immunostimulatory Properties of CpG DNAs Containing Alkyl-Linker Substitutions:Â Role of Nucleosides in the Flanking Sequences. Journal of Medicinal Chemistry, 2002, 45, 4540-4548.	2.9	37

#	Article	IF	CITATIONS
91	Cutting Edge: The UNC93B1 Tyrosine-Based Motif Regulates Trafficking and TLR Responses via Separate Mechanisms. Journal of Immunology, 2014, 193, 3257-3261.	0.4	37
92	Inhibition of 14q32 microRNA miR-495 reduces lesion formation, intimal hyperplasia and plasma cholesterol levels in experimental restenosis. Atherosclerosis, 2017, 261, 26-36.	0.4	37
93	Immunomodulatory oligonucleotides as novel therapy for breast cancer: pharmacokinetics, in vitro and in vivo anticancer activity, and potentiation of antibody therapy. Molecular Cancer Therapeutics, 2006, 5, 2106-2114.	1.9	36
94	A Novel Toll-Like Receptor 9 Agonist Cooperates with Trastuzumab in Trastuzumab-Resistant Breast Tumors through Multiple Mechanisms of Action. Clinical Cancer Research, 2009, 15, 6921-6930.	3.2	35
95	Antitumor Activity and Immune Response Induction of a Dual Agonist of Toll-Like Receptors 7 and 8. Molecular Cancer Therapeutics, 2010, 9, 1788-1797.	1.9	35
96	Hoogsteen DNA Duplexes of 3â€~â~'3â€~- and 5â€~â~'5â€~-Linked Oligonucleotides and Triplex Formation with RNA and DNA Pyrimidine Single Strands:Â Experimental and Molecular Modeling Studies. Biochemistry, 1996, 35, 15332-15339.	1.2	34
97	Pharmacokinetics and Metabolism of an Oligodeoxynucleotide Phosphorothioate (GEM91®) in Cynomolgus Monkeys Following Intravenous Infusion. Oligonucleotides, 1998, 8, 43-52.	4.4	33
98	Novel immunomodulatory oligonucleotides prevent development of allergic airway inflammation and airway hyperresponsiveness in asthma. International Immunopharmacology, 2004, 4, 127-138.	1.7	33
99	Immunostimulatory properties of phosphorothioate CpG DNA containing both 3'-5'- and 2'-5'-internucleotide linkages. Nucleic Acids Research, 2002, 30, 1613-1619.	6.5	32
100	Antisense MDM2 sensitizes prostate cancer cells to androgen deprivation, radiation, and the combination. International Journal of Radiation Oncology Biology Physics, 2004, 58, 336-343.	0.4	32
101	Tilsotolimod with Ipilimumab Drives Tumor Responses in Anti–PD-1 Refractory Melanoma. Cancer Discovery, 2021, 11, 1996-2013.	7.7	32
102	Growth arrest and induction of apoptosis in breast cancer cells by antisense depletion of protein kinase A-RI alpha subunit: p53-independent mechanism of action. Molecular and Cellular Biochemistry, 1999, 195, 25-36.	1.4	31
103	Synthetic oligoribonucleotides-containing secondary structures act as agonists of Toll-like receptors 7 and 8. Biochemical and Biophysical Research Communications, 2009, 386, 443-448.	1.0	31
104	CpG penta- and hexadeoxyribonucleotides as potent immunomodulatory agents. Biochemical and Biophysical Research Communications, 2003, 300, 853-861.	1.0	30
105	Oral administration of second-generation immunomodulatory oligonucleotides induces mucosal Th1 immune responses and adjuvant activity. Vaccine, 2005, 23, 2614-2622.	1.7	30
106	Enzymatic Synthesis of Stereoregular (All Rp) Oligonucleotide Phosphorothioate and Its Properties. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 985-990.	0.4	29
107	Self-stabilized CpG DNAs optimally activate human B cells and plasmacytoid dendritic cells. Biochemical and Biophysical Research Communications, 2003, 310, 1133-1139.	1.0	29
108	<i>In Vivo</i> Pharmacokinetics of Phosphorothioate Oligonucleotides Containing Contiguous Guanosines. Oligonucleotides, 1997, 7, 245-249.	4.4	28

#	Article	IF	CITATIONS
109	Antisense depletion of RIα subunit of protein kinase A induces apoptosis and growth arrest in human breast cancer cells. Breast Cancer Research and Treatment, 1998, 49, 97-107.	1.1	28
110	Impact of mixed-backbone oligonucleotides on target binding affinity and target cleaving specificity and selectivity by Escherichia coli RNase H. Bioorganic and Medicinal Chemistry, 1998, 6, 1695-1705.	1.4	28
111	Antisense-MDM2 Sensitizes LNCaP Prostate Cancer Cells to Androgen Deprivation, Radiation, and the Combination In Vivo. International Journal of Radiation Oncology Biology Physics, 2007, 68, 1151-1160.	0.4	28
112	Non-specific antiviral activity of antisense molecules targeted to the E1 region of human papillomavirus. Antiviral Research, 2000, 48, 187-196.	1.9	27
113	Effect of Aspirin on Protein Binding and Tissue Disposition of Oligonucleotide Phosphorothioate in Rats. Journal of Drug Targeting, 1998, 5, 303-312.	2.1	26
114	The Roles of E6-AP and MDM2 in p53 Regulation in Human Papillomavirus-Positive Cervical Cancer Cells. Oligonucleotides, 2000, 10, 17-27.	4.4	26
115	Impact of Secondary Structure of Toll-Like Receptor 9 Agonists on Interferon Alpha Induction. Antimicrobial Agents and Chemotherapy, 2008, 52, 4320-4325.	1.4	26
116	Toll-like Receptor 7 Selective Synthetic Oligoribonucleotide Agonists: Synthesis and Structureâ°'Activity Relationship Studies. Journal of Medicinal Chemistry, 2009, 52, 6871-6879.	2.9	26
117	Was Induction of HIV-1 Through TLR9?. Journal of Immunology, 2003, 171, 1621-1622.	0.4	25
118	â€~Cyclicons' as hybridization-based fluorescent primer-probes: synthesis, properties and application in real-time PCR. Bioorganic and Medicinal Chemistry, 2000, 8, 1911-1916.	1.4	24
119	Modulation of oligonucleotide-induced immune stimulation by cyclodextrin analogs. Biochemical Pharmacology, 1996, 52, 1537-1544.	2.0	23
120	Agonists of Toll-like Receptor 9 Containing Synthetic Dinucleotide Motifs. Journal of Medicinal Chemistry, 2007, 50, 6411-6418.	2.9	23
121	Antisense MDM2 enhances the response of androgen insensitive human prostate cancer cells to androgen deprivation in vitro and in vivo. Prostate, 2008, 68, 599-609.	1.2	23
122	Design, biochemical, biophysical and biological properties of cooperative antisense oligonucleotides. Nucleic Acids Research, 1995, 23, 3578-3584.	6.5	22
123	Novel MDM2 p53-Independent Functions Identified through RNA Silencing Technologies. Annals of the New York Academy of Sciences, 2005, 1058, 205-214.	1.8	22
124	Coadministration of Telomerase Genetic Vaccine and a Novel TLR9 Agonist in Nonhuman Primates. Molecular Therapy, 2009, 17, 1804-1813.	3.7	22
125	Antisense MDM2 oligonucleotides restore the apoptotic response of prostate cancer cells to androgen deprivation. Prostate, 2004, 60, 187-196.	1.2	20
126	Solid-phase stereoselective synthesis of 2′-O-methyl-oligoribonucleoside phosphorothioates using nucleoside bicyclic oxazaphospholidines. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 2539-2544.	1.0	19

#	Article	IF	CITATIONS
127	Biodistribution and Metabolism of a Mixed Backbone Oligonucleotide (GEM 231) Following Single and Multiple Dose Administration in Mice. Oligonucleotides, 2000, 10, 333-345.	4.4	19
128	Oligodeoxynucleotides containing synthetic immunostimulatory motifs augment potent Th1 immune responses to HBsAg in mice. International Immunopharmacology, 2005, 5, 981-991.	1.7	19
129	PKA knockdown enhances cell killing in response to radiation and androgen deprivation. International Journal of Cancer, 2011, 128, 962-973.	2.3	19
130	Bioreversible oligonucleotide conjugates by site-specific derivatization. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 871-876.	1.0	18
131	Cell binding, uptake and cytosolic partition of HIV anti-gag Phosphodiester oligonucleotides 3′-linked to cholesterol derivatives in macrophages. Bioorganic and Medicinal Chemistry, 1999, 7, 2263-2269.	1.4	18
132	A TLR9 agonist enhances therapeutic effects of telomerase genetic vaccine. Vaccine, 2010, 28, 3522-3530.	1.7	18
133	Novel Oligonucleotides Containing Two 3â€2-Ends Complementary to Target mRNA Show Optimal Gene-Silencing Activity. Journal of Medicinal Chemistry, 2011, 54, 3027-3036.	2.9	18
134	Inhibition of Mef2a Enhances Neovascularization via Post-transcriptional Regulation of 14q32 MicroRNAs miR-329 and miR-494. Molecular Therapy - Nucleic Acids, 2017, 7, 61-70.	2.3	18
135	N-pent-4-enoyl (PNT) group as a universal nucleobase protector: Applications in the rapid and facile synthesis of oligonucleotides, analogs, and conjugates. Tetrahedron, 1997, 53, 2731-2750.	1.0	16
136	Modulation of ovalbumin-induced Th2 responses by second-generation immunomodulatory oligonucleotides in mice. International Immunopharmacology, 2004, 4, 851-862.	1.7	16
137	Novel oligodeoxynucleotide agonists of TLR9 containing N3-Me-dC or N1-Me-dG modifications. Nucleic Acids Research, 2006, 34, 3231-3238.	6.5	16
138	Synthetic oligoribonucleotides containing arabinonucleotides act as agonists of TLR7 and 8. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2044-2047.	1.0	16
139	Synthesis of di-, tri-, and tetrameric building blocks with novel carbamate internucleoside linkages and their incorporation into oligonucleotides. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 1065-1070.	1.0	14
140	3′-3′-linked oligonucleotides: Synthesis and stability studies. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 827-832.	1.0	14
141	Effects of phosphorothioate oligodeoxyribonucleotide and oligoribonucleotides on human complement and coagulation. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 2103-2108.	1.0	14
142	A Mild and Efficient Solid-Support Synthesis of Novel Oligonucleotide Conjugates. Bioconjugate Chemistry, 1998, 9, 283-291.	1.8	14
143	Synthesis and immunological activities of novel agonists of toll-like receptor 9. Cellular Immunology, 2010, 263, 105-113.	1.4	14
144	Synthesis and immunological activities of novel Toll-like receptor 7 and 8 agonists. Cellular Immunology, 2011, 270, 126-134.	1.4	14

#	Article	IF	CITATIONS
145	Intratumoural immunotherapy: activation of nucleic acid sensing pattern recognition receptors. Immuno-Oncology Technology, 2019, 3, 15-23.	0.2	14
146	The use of gaseous ammonia for the deprotection and cleavage steps during the solid-phase synthesis of oligonucleotides, and analogs. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 1443-1448.	1.0	13
147	The Evolution of Antisense Oligonucleotide Chemistry—A Personal Journey. Biomedicines, 2021, 9, 503.	1.4	13
148	Synthesis, biophysical properties, and stability studies of mixed backbone oligonucleotides containing segments of methylphosphotriester internucleotidic linkages. Tetrahedron, 1996, 52, 14419-14436.	1.0	12
149	Immunopharmacological and antitumor effects of second-generation immunomodulatory oligonucleotides containing synthetic CpR motifs. International Journal of Oncology, 2004, 24, 901.	1.4	12
150	Antisense MDM2 Enhances E2F1-Induced Apoptosis and the Combination Sensitizes Androgen-Dependent and Androgen-Independent Prostate Cancer Cells to Radiation. Molecular Cancer Research, 2008, 6, 1742-1754.	1.5	12
151	Mixed backbone oligonucleotides containing internucleotidic primary phosphoramidate linkages. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 2663-2668.	1.0	11
152	Restoration of ß-Globin Gene Expression in Mammalian Cells by Antisense Oligonucleotides That Modify the Aberrant Splicing Patierns of Thalassemic Pre-mRNAs. Nucleosides & Nucleotides, 1997, 16, 1173-1182.	0.5	11
153	Cooperative Antitumor Effect of Mixed Backbone Oligonucleotides Targeting Protein Kinase A in Combination with Cytotoxic Drugs or Biologic Agents. Oligonucleotides, 1998, 8, 141-145.	4.4	11
154	Immune Modulatory Oligonucleotides in Prevention of Nasal Allergen—Induced Eustachian Tube Dysfunction in Rats. Otolaryngology - Head and Neck Surgery, 2007, 137, 250-255.	1.1	11
155	Single-Stranded DNA and RNA Targeted Triplex-Formation: UV, CD and Molecular Modeling Studies of Foldback Triplexes Containing Different RNA, 2′-OMe-RNA and DNA Strand Combinations. Journal of Biomolecular Structure and Dynamics, 1997, 14, 715-726.	2.0	10
156	Mixed-Backbone Oligonucleotides Containing Phosphorothioate and Methylphosphonate Linkages as Second Generation Antisense Oligonucleotide. Nucleosides & Nucleotides, 1997, 16, 927-936.	0.5	9
157	Synergistic inhibition of HIV-1 by an antisense oligonucleotide and nucleoside analog reverse transcriptase inhibitors. Antiviral Research, 1998, 38, 63-73.	1.9	9
158	Induction of immune activation by a novel immunomodulatory oligonucleotide without thymocyte apoptosis. Biochemical and Biophysical Research Communications, 2004, 318, 60-66.	1.0	8
159	The role of immunomodulatory oligonucleotides in prevention of OVA-induced Eustachian tube dysfunction. International Journal of Pediatric Otorhinolaryngology, 2006, 70, 2019-2026.	0.4	8
160	Immune Modulatory Oligonucleotides in the Prevention and Treatment of OVAâ€Induced Eustachian Tube Dysfunction in Rats. Otolaryngology - Head and Neck Surgery, 2007, 137, 321-326.	1.1	8
161	Modulation of Endosomal Toll-Like Receptor-Mediated Immune Responses by Synthetic Oligonucleotides. Advances in Polymer Science, 2011, , 61-93.	0.4	8
162	Immune-Stimulatory Dinucleotide at the 5′-End of Oligodeoxynucleotides Is Critical for TLR9-Mediated Immune Responses. ACS Medicinal Chemistry Letters, 2013, 4, 302-305.	1.3	8

#	Article	IF	CITATIONS
163	Synthesis and Properties of 2'-O-Methylribonucleotide Methylphosphonate Containing Chimeric Oligonucleotides. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 1031-1035.	0.4	7
164	Antisense oligonucleotides as antiviral agents. Advances in Antiviral Drug Design, 1996, , 1-39.	0.7	7
165	Intratumoral Pharmacokinetics of Oligonucleotides in a Tissue-Isolated Tumor Perfusion System. Oligonucleotides, 2000, 10, 105-110.	4.4	7
166	Design of synthetic oligoribonucleotide-based agonists of Toll-like receptor 3 and their immune response profiles in vitro and in vivo. Organic and Biomolecular Chemistry, 2013, 11, 1049.	1.5	7
167	RNA Therapeutics Are Stepping Out of the Maze. Trends in Molecular Medicine, 2020, 26, 1061-1064.	3.5	7
168	The Cockayne syndrome group B DNA repair protein as an anti-cancer target. International Journal of Oncology, 2001, 19, 1089-97.	1.4	6
169	Immunization with gp120-depleted whole killed HIV immunogen and a second-generation CpG DNA elicits strong HIV-specific responses in mice. Vaccine, 2006, 24, 1470-1477.	1.7	6
170	Repression of Human Thymidylate Synthase mRNA Translation by Antisense 2′-O-Methyl Oligoribonucleotides. Oligonucleotides, 1998, 8, 371-378.	4.4	5
171	Sa1757 Targeting Innate Immune Receptors to Treat Inflammatory Bowel Disease: Preclinical Activity of IMO-9200, an Antagonist of TLRS 7, 8, and 9 in Mouse Models of Colitis. Gastroenterology, 2015, 148, S-324.	0.6	5
172	Suppression of Kv3.3 channels by antisense oligonucleotides reverses biochemical effects and motor impairment in spinocerebellar ataxia type 13 mice. FASEB Journal, 2021, 35, e22053.	0.2	5
173	Introduction and History of the Chemistry of Nucleic Acids Therapeutics. Methods in Molecular Biology, 2022, 2434, 3-31.	0.4	5
174	Patent strategies in the antisense oligonucleotide based therapeutic approach. Expert Opinion on Therapeutic Patents, 1997, 7, 1175-1182.	2.4	4
175	Pseudo-cyclic oligonucleotides: in vitro and in vivo properties. Bioorganic and Medicinal Chemistry, 1999, 7, 2727-2735.	1.4	4
176	Potentiation of antitumor activity of irinotecan by chemically modified oligonucleotides. International Journal of Oncology, 2001, 18, 1061-9.	1.4	4
177	Hybridization-based fluorescence assay allows quantitation of single-stranded oligodeoxynucleotides in low nanomolar range. Analytical Biochemistry, 2004, 328, 93-95.	1.1	3
178	Synthesis, Biophysical Properties, and Stability Studies of Mixed Backbone Oligonucleotides Containing Novel Non-Ionic Linkages. Nucleosides & Nucleotides, 1997, 16, 1491-1495.	0.5	2
179	Mixed-Backbone Oligonucleotides Containing Segments of Deoxynucleosides Phosphorothioate and 2'- <i>O</i> -Methylribonucleosides Methylphosphonate: Synthesis and Properties. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 144, 363-366.	0.8	1
180	Impact of Site-Specific Nucleobase Deletions on the Arthritogenicity of DNA. Inflammation, 2004, 28, 159-168.	1.7	1

#	Article	IF	CITATIONS
181	Chemistry of CpG DNA. Current Protocols in Nucleic Acid Chemistry, 2003, 12, Unit 4.16.	0.5	0