
Carolina H Pohl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/922832/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reactive oxygen species as potential antiviral targets. Reviews in Medical Virology, 2022, 32, .	8.3	21
2	Rotavirus-Mediated Prostaglandin E2 Production in MA104 Cells Promotes Virus Attachment and Internalisation, Resulting in an Increased Viral Load. Frontiers in Physiology, 2022, 13, 805565.	2.8	2
3	Cryptococcal Protease(s) and the Activation of SARS-CoV-2 Spike (S) Protein. Cells, 2022, 11, 437.	4.1	6
4	Recent Advances and Opportunities in the Study of Candida albicans Polymicrobial Biofilms. Frontiers in Cellular and Infection Microbiology, 2022, 12, 836379.	3.9	18
5	Competition for Iron during Polymicrobial Infections May Increase Antifungal Drug Susceptibility—How Will It Impact Treatment Options?. Infection and Immunity, 2022, 90, e0005722.	2.2	3
6	The Potential of Single-Cell Oils Derived From Filamentous Fungi as Alternative Feedstock Sources for Biodiesel Production. Frontiers in Microbiology, 2021, 12, 637381.	3.5	34
7	Transcriptional response of <i>Candida albicans</i> to <i>Pseudomonas aeruginosa</i> in a polymicrobial biofilm. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	8
8	Role of the high-affinity reductive iron acquisition pathway of <i>Candida albicans</i> in prostaglandin E2 production, virulence, and interaction with <i>Pseudomonas aeruginosa</i> . Medical Mycology, 2021, 59, 869-881.	0.7	9
9	The Repurposing of Acetylsalicylic Acid as a Photosensitiser to Inactivate the Growth of Cryptococcal Cells. Pharmaceuticals, 2021, 14, 404.	3.8	3
10	Candida albicans SET3 Plays a Role in Early Biofilm Formation, Interaction With Pseudomonas aeruginosa and Virulence in Caenorhabditis elegans. Frontiers in Cellular and Infection Microbiology, 2021, 11, 680732.	3.9	8
11	The role of lipid droplets in microbial pathogenesis. Journal of Medical Microbiology, 2021, 70, .	1.8	10
12	Risk Factors for Fungal Co-Infections in Critically Ill COVID-19 Patients, with a Focus on Immunosuppressants. Journal of Fungi (Basel, Switzerland), 2021, 7, 545.	3.5	35
13	Editorial: Fungal Biofilms in Infection and Disease. Frontiers in Cellular and Infection Microbiology, 2021, 11, 753650.	3.9	2
14	Inhibitory effect of polyunsaturated fatty acids alone or in combination with fluconazole on <i>Candida krusei</i> biofilms <i>in vitro</i> and in <i>Caenorhabditis elegans</i> . Medical Mycology, 2021, 59, 1225-1237.	0.7	8
15	The Repurposing of the Antimalaria Drug, Primaquine, as a Photosensitizer to Inactivate Cryptococcal Cells. Photochem, 2021, 1, 275-286.	2.2	1
16	The first survey of cryptococcal cells in bird droppings across Bloemfontein, South Africa. Veterinary World, 2021, 14, 2739-2744.	1.7	0
17	A review on molecular docking analysis of phytocompounds against SARS-CoV-2 druggable targets. International Journal of Transgender Health, 2021, 14, 1100-1128.	2.3	6
18	Caenorhabditis elegans as a model animal for investigating fungal pathogenesis. Medical Microbiology and Immunology, 2020, 209, 1-13.	4.8	22

#	Article	IF	CITATIONS
19	Evaluations of biocidal potential of Euclea crispa stem bark extract and ability to compromise the integrity of microbial cell membrane. Journal of Herbal Medicine, 2020, 21, 100304.	2.0	2
20	Transcriptome Analyses of Candida albicans Biofilms, Exposed to Arachidonic Acid and Fluconazole, Indicates Potential Drug Targets. G3: Genes, Genomes, Genetics, 2020, 10, 3099-3108.	1.8	11
21	Synthesis and function of fatty acids and oxylipins, with a focus on Caenorhabditis elegans. Prostaglandins and Other Lipid Mediators, 2020, 148, 106426.	1.9	9
22	Environmental Factors That Contribute to the Maintenance of Cryptococcus neoformans Pathogenesis. Microorganisms, 2020, 8, 180.	3.6	16
23	Evaluation of Fresh Water Actinomycete Bioflocculant and Its Biotechnological Applications in Wastewaters Treatment and Removal of Heavy Metals. International Journal of Environmental Research and Public Health, 2019, 16, 3337.	2.6	22
24	Beyond Antagonism: The Interaction Between Candida Species and Pseudomonas aeruginosa. Journal of Fungi (Basel, Switzerland), 2019, 5, 34.	3.5	43
25	Bioflocculant production from Streptomyces platensis and its potential for river and waste water treatment. Brazilian Journal of Microbiology, 2018, 49, 731-741.	2.0	34
26	Functional Characterization of Cryptococcal Genes: Then and Now. Frontiers in Microbiology, 2018, 9, 2263.	3.5	1
27	Copper Acyl Salicylate Has Potential as an Anti-Cryptococcus Antifungal Agent. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	7
28	Significance of combination therapy between Euclea crispa (Thunb.) (leaf and stem bark) extracts and standard antibiotics against drug resistant bacteria. South African Journal of Botany, 2018, 118, 203-208.	2.5	1
29	Iron at the Centre of Candida albicans Interactions. Frontiers in Cellular and Infection Microbiology, 2018, 8, 185.	3.9	72
30	Production of single cell oil from cane molasses by Rhodotorula kratochvilovae (syn,) Tj ETQq0 0 0 rgBT /Overloc	:k 10 Tf 5(2.6	0 302 Td (Rho
31	Pseudomonas aeruginosa produces aspirin insensitive eicosanoids and contributes to the eicosanoid profile of polymicrobial biofilms with Candida albicans. Prostaglandins Leukotrienes and Essential Fatty Acids, 2017, 117, 36-46.	2.2	14
32	Genome-wide functional analysis in <i>Candida albicans</i> . Virulence, 2017, 8, 1563-1579.	4.4	18
33	Time-kill kinetics and biocidal effect of Euclea crispa leaf extracts against microbial membrane. Asian Pacific Journal of Tropical Medicine, 2017, 10, 390-399.	0.8	11
34	Optimization of cultivation conditions for biotechnological production of lipid by Rhodotorula kratochvilovae (syn, Rhodosporidium kratochvilovae) SY89 for biodiesel preparation. 3 Biotech, 2017, 7, 145.	2.2	50
35	Flocculating performance of a bioflocculant produced by Arthrobacter humicola in sewage waste water treatment. BMC Biotechnology, 2017, 17, 51.	3.3	33
36	Prostaglandin E2 As a Modulator of Viral Infections. Frontiers in Physiology, 2017, 8, 89.	2.8	82

#	Article	IF	CITATIONS
37	Elucidation of the Role of 3-Hydroxy Fatty Acids in Cryptococcus-amoeba Interactions. Frontiers in Microbiology, 2017, 8, 765.	3.5	7
38	The Repurposing of Anti-Psychotic Drugs, Quetiapine and Olanzapine, as Anti-Cryptococcus Drugs. Frontiers in Microbiology, 2017, 8, 815.	3.5	18
39	Candida albicans and Pseudomonas aeruginosa Interaction, with Focus on the Role of Eicosanoids. Frontiers in Physiology, 2016, 7, 64.	2.8	77
40	Oleaginous yeasts from Ethiopia. AMB Express, 2016, 6, 78.	3.0	15
41	Repurposing of Aspirin and Ibuprofen as Candidate Anti-Cryptococcus Drugs. Antimicrobial Agents and Chemotherapy, 2016, 60, 4799-4808.	3.2	47
42	Method for identification of Cryptococcus neoformansand Cryptococcus gattiiuseful in resource-limited settings. Journal of Clinical Pathology, 2016, 69, 352-357.	2.0	7
43	A Review of the Application of Biofloccualnts in Wastewater Treatment. Polish Journal of Environmental Studies, 2016, 25, 1381-1389.	1.2	27
44	Cryptococcal 3-Hydroxy Fatty Acids Protect Cells Against Amoebal Phagocytosis. Frontiers in Microbiology, 2015, 6, 1351.	3.5	9
45	Candida albicans mutant construction and characterization of selected virulence determinants. Journal of Microbiological Methods, 2015, 115, 153-165.	1.6	7
46	Virulence of South African Candida albicans strains isolated from different clinical samples. Medical Mycology, 2014, 52, 246-253.	0.7	6
47	Oxidized Fatty Acids as Inter-Kingdom Signaling Molecules. Molecules, 2014, 19, 1273-1285.	3.8	39
48	Auger-Architectomics: Introducing a New Nanotechnology to Infectious Disease. Advances in Experimental Medicine and Biology, 2014, 807, 1-8.	1.6	5
49	Phenothiazine is a potent inhibitor of prostaglandin E2production byCandida albicansbiofilms. FEMS Yeast Research, 2013, 13, 849-855.	2.3	10
50	The "firing cannons―of <i>Dipodascopsis uninucleata</i> var. <i>uninucleata</i> . Canadian Journal of Microbiology, 2013, 59, 413-416.	1.7	3
51	Trichosporon vanderwaltii sp. nov., an asexual basidiomycetous yeast isolated from soil and beetles. Antonie Van Leeuwenhoek, 2013, 103, 313-319.	1.7	11
52	Chloroquine, an Antifungal but Also a Fertility Drug. Antimicrobial Agents and Chemotherapy, 2013, 57, 5786-5786.	3.2	0
53	Intracellular gas bubbles deform organelles in fermenting brewing yeasts. Journal of the Institute of Brewing, 2013, 119, 15-16.	2.3	4
54	Yeast Sensors for Novel Drugs: Chloroquine and Others Revealed. Sensors, 2012, 12, 13058-13074.	3.8	5

#	Article	IF	CITATIONS
55	Polyunsaturated fatty acids cause apoptosis in C. albicans and C. dubliniensis biofilms. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1463-1468.	2.4	42
56	Gas bubble formation in the cytoplasm of a fermenting yeast. FEMS Yeast Research, 2012, 12, 867-869.	2.3	11
57	Stearidonic acid acts in synergism with amphotericin B in inhibiting Candida albicans and Candida dubliniensis biofilms in vitro. International Journal of Antimicrobial Agents, 2012, 40, 284-285.	2.5	6
58	Cryptococcus cyanovorans sp. nov., a basidiomycetous yeast isolated from cyanide-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 1208-1214.	1.7	9
59	Arachidonic acid metabolites in pathogenic yeasts. Lipids in Health and Disease, 2012, 11, 100.	3.0	17
60	The presence of 3-hydroxy oxylipins in pathogenic microbes. Prostaglandins and Other Lipid Mediators, 2012, 97, 17-21.	1.9	4
61	Sciadonic acid modulates prostaglandin E2 production by epithelial cells during infection with C. albicans and C. dubliniensis. Prostaglandins and Other Lipid Mediators, 2012, 97, 66-71.	1.9	16
62	The anti-mitochondrial antifungal assay for the discovery and development of new drugs. Expert Opinion on Drug Discovery, 2011, 6, 671-681.	5.0	7
63	The influence of mitochondrial inhibitors on the life cycle of Phytophthora. African Journal of Microbiology Research, 2011, 5, 3175-3180.	0.4	1
64	Candida albicans or Candida dubliniensis?. Mycoses, 2011, 54, 1-16.	4.0	38
65	Effect of inhibitors of arachidonic acid metabolism on prostaglandin E2 production by Candida albicans and Candida dubliniensis biofilms. Medical Microbiology and Immunology, 2011, 200, 23-28.	4.8	23
66	Rhodotorula bloemfonteinensis sp. nov., Rhodotorula eucalyptica sp. nov., Rhodotorula orientis sp. nov. and Rhodotorula pini sp. nov., yeasts isolated from monoterpene-rich environments. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 2320-2327.	1.7	12
67	Effect of Marine Polyunsaturated Fatty Acids on Biofilm Formation of Candida albicans and Candida dubliniensis. Marine Drugs, 2010, 8, 2597-2604.	4.6	54
68	The effects of palm oil breakdown products on lipid turnover and morphology of fungi. Canadian Journal of Microbiology, 2010, 56, 883-889.	1.7	3
69	Anti-inflammatory drugs selectively target sporangium development in Mucor. Canadian Journal of Microbiology, 2009, 55, 1392-1396.	1.7	7
70	Development of a Yeast Bio-Assay to Screen Anti-Mitochondrial Drugs. Current Drug Discovery Technologies, 2009, 6, 186-191.	1.2	14
71	Distribution of 3-hydroxy oxylipins and acetylsalicylic acid sensitivity in <i>Cryptococcus</i> species. Canadian Journal of Microbiology, 2008, 54, 111-118.	1.7	10
72	Variation in yeast mitochondrial activity associated with asci. Canadian Journal of Microbiology, 2008, 54, 532-536.	1.7	4

#	Article	IF	CITATIONS
73	Oxylipin and mitochondrion probes to track yeast sexual cells. Canadian Journal of Microbiology, 2008, 54, 450-455.	1.7	5
74	The influence of acetylsalicylic acid on oxylipin migration in Cryptococcus neoformans var. <i>neoformans</i> UOFS Y-1378. Canadian Journal of Microbiology, 2008, 54, 91-96.	1.7	15
75	Arachidonic acid increases antifungal susceptibility of Candida albicans and Candida dubliniensis. Journal of Antimicrobial Chemotherapy, 2008, 63, 124-128.	3.0	37
76	3-Hydroxy fatty acids found in capsules ofCryptococcus neoformans. Canadian Journal of Microbiology, 2007, 53, 809-812.	1.7	23
77	The release of elongated, sheathed ascospores from bottle-shaped asci inDipodascus geniculatus. FEMS Yeast Research, 2007, 7, 173-179.	2.3	7
78	Oxylipin studies expose aspirin as antifungal. FEMS Yeast Research, 2007, 7, 1207-1217.	2.3	25
79	Mitochondrial Associated Yeast Flocculation -The Effect of Acetylsalicylic Acid. Journal of the Institute of Brewing, 2007, 113, 42-47.	2.3	9
80	Acetylsalicylic acid as antifungal in Eremothecium and other yeasts. Antonie Van Leeuwenhoek, 2007, 91, 393-405.	1.7	18
81	Oxylipin-coated hat-shaped ascospores of Ascoidea corymbosa. Canadian Journal of Microbiology, 2006, 52, 1046-1050.	1.7	7
82	Oxylipin covered ascospores of Eremothecium coryli. Antonie Van Leeuwenhoek, 2006, 89, 91-97.	1.7	10
83	Mapping the distribution of 3-hydroxy oxylipins in the ascomycetous yeast Saturnispora saitoi. Systematic and Applied Microbiology, 2006, 29, 446-449.	2.8	4
84	Oxylipin Associated Co-Flocculation in Yeasts. Journal of the Institute of Brewing, 2006, 112, 66-71.	2.3	7
85	Yeast Biomechanics. , 2006, , 725-725.		1
86	Cryptococcus anemochoreius sp. nov., a novel anamorphic basidiomycetous yeast isolated from the atmosphere in central South Africa. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 2703-2706.	1.7	6
87	Ascospore release from bottle-shaped asci in. FEMS Yeast Research, 2005, 5, 1185-1190.	2.3	11
88	Acetate-enhanced polymerized triacylglycerol utilization by Mucor circinelloides. World Journal of Microbiology and Biotechnology, 2005, 21, 97-99.	3.6	1
89	Bioactive Oxylipins in <i>Saccharomyces cerevisiae</i> . Journal of the Institute of Brewing, 2005, 111, 304-308.	2.3	22
90	The presence of 3-hydroxy oxylipins on the ascospore surfaces of some species representing Saccharomycopsis SchiĶnning. Canadian Journal of Microbiology, 2005, 51, 605-612.	1.7	6

#	Article	IF	CITATIONS
91	The presence of novel 3-hydroxy oxylipins on surfaces of hat-shaped ascospores of Ascoidea africana Batra & Francke-Grosmann. Canadian Journal of Microbiology, 2005, 51, 99-103.	1.7	5
92	Report on the discovery of a novel 3-hydroxy oxylipin cascade in the yeast Saccharomycopsis synnaedendra. Prostaglandins and Other Lipid Mediators, 2004, 74, 139-146.	1.9	5
93	Variation in functional ascospore parts in the ascomycetous yeast Dipodascopsis uninucleata. Antonie Van Leeuwenhoek, 2004, 85, 187-189.	1.7	3
94	Mapping 3-hydroxy oxylipins on ascospores of Eremothecium sinecaudum. Antonie Van Leeuwenhoek, 2004, 86, 363-368.	1.7	9
95	Oxylipins and ascospore morphology in the ascomycetous yeast genus Dipodascus. Antonie Van Leeuwenhoek, 2003, 83, 317-325.	1.7	13
96	The distribution of 3-hydroxy oxylipins in fungi. Prostaglandins and Other Lipid Mediators, 2003, 71, 85-96.	1.9	65
97	Differentiation of Brewing and Related Yeasts Based on PCR Amplification and Restriction Fragment Length Polymorphism of Ribosomal DNA. Journal of the Institute of Brewing, 2002, 108, 164-168.	2.3	4
98	Bioprospecting for novel oxylipins in fungi: the presence of 3-hydroxy oxylipins in Pilobolus. Antonie Van Leeuwenhoek, 2001, 80, 93-99.	1.7	17
99	Bioprospecting for novel hydroxyoxylipins in fungi: presence of 3-hydroxy palmitic acid in Saccharomycopsis malanga. Antonie Van Leeuwenhoek, 2001, 80, 311-315.	1.7	8
100	A novel oxylipin-associated 'ghosting' phenomenon in yeast flocculation. Antonie Van Leeuwenhoek, 2000, 77, 401-406.	1.7	39
101	Oxylipin Formation in Fungi: Biotransformation of Arachidonic Acid to 3-Hydroxy-5,8-tetradecadienoic Acid byMucor genevensis. Biochemical and Biophysical Research Communications, 1998, 253, 703-706.	2.1	15
102	Notes on the physiology and morphology of Thamnostylum piriforme isolated for the first time in South Africa. South African Journal of Botany, 1997, 63, 104-108.	2.5	0
103	The production of gamma-linolenic acid by selected members of the Dikaryomycota grown on different carbon sources. Antonie Van Leeuwenhoek, 1997, 72, 191-199.	1.7	4