Marianne E Bronner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9227927/publications.pdf

Version: 2024-02-01

180 papers 10,011 citations

³⁸⁷³⁸
50
h-index

49904 87 g-index

221 all docs

221 docs citations

times ranked

221

10762 citing authors

#	Article	IF	CITATIONS
1	Guidelines and definitions for research on epithelial–mesenchymal transition. Nature Reviews Molecular Cell Biology, 2020, 21, 341-352.	37.0	1,195
2	Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nature Genetics, 2013, 45, 415-421.	21.4	588
3	Establishing neural crest identity: a gene regulatory recipe. Development (Cambridge), 2015, 142, 242-257.	2.5	502
4	Spatiotemporal structure of cell fate decisions in murine neural crest. Science, 2019, 364, .	12.6	345
5	Development and evolution of the neural crest: An overview. Developmental Biology, 2012, 366, 2-9.	2.0	311
6	Rapid adaptive optical recovery of optimal resolution over large volumes. Nature Methods, 2014, 11, 625-628.	19.0	253
7	Dynamic Ligand Discrimination in the Notch Signaling Pathway. Cell, 2018, 172, 869-880.e19.	28.9	246
8	Mapping a multiplexed zoo of mRNA expression. Development (Cambridge), 2016, 143, 3632-3637.	2.5	198
9	Evolution of vertebrates as viewed from the crest. Nature, 2015, 520, 474-482.	27.8	195
10	Regulatory Logic Underlying Diversification of the Neural Crest. Trends in Genetics, 2017, 33, 715-727.	6.7	156
11	Reprogramming of avian neural crest axial identity and cell fate. Science, 2016, 352, 1570-1573.	12.6	142
12	Sip1 mediates an E-cadherin-to-N-cadherin switch during cranial neural crest EMT. Journal of Cell Biology, 2013, 203, 835-847.	5.2	135
13	Dynamic and Differential Regulation of Stem Cell Factor FoxD3 in the Neural Crest Is Encrypted in the Genome. PLoS Genetics, 2012, 8, e1003142.	3.5	121
14	What is bad in cancer is good in the embryo: Importance of EMT in neural crest development. Seminars in Cell and Developmental Biology, 2012, 23, 320-332.	5.0	119
15	Developmental origins and evolution of jaws: new interpretation of "maxillary―and "mandibular― Developmental Biology, 2004, 276, 225-236.	2.0	115
16	A critical role for Cadherin6B in regulating avian neural crest emigration. Developmental Biology, 2007, 312, 533-544.	2.0	115
17	Comprehensive spatiotemporal analysis of early chick neural crest network genes. Developmental Dynamics, 2009, 238, 716-723.	1.8	109
18	Early steps in neural crest specification. Seminars in Cell and Developmental Biology, 2005, 16, 642-646.	5.0	108

#	Article	IF	CITATIONS
19	Insights into neural crest development and evolution from genomic analysis. Genome Research, 2013, 23, 1069-1080.	5 . 5	107
20	Transcriptome analysis reveals novel players in the cranial neural crest gene regulatory network. Genome Research, 2014, 24, 281-290.	5 . 5	106
21	Neuropilin 2/semaphorin 3F signaling is essential for cranial neural crest migration and trigeminal ganglion condensation. Developmental Neurobiology, 2007, 67, 47-56.	3.0	105
22	A Stable Cranial Neural Crest Cell Line from Mouse. Stem Cells and Development, 2012, 21, 3069-3080.	2.1	105
23	The Neural Crest Migrating into the Twenty-First Century. Current Topics in Developmental Biology, 2016, 116, 115-134.	2.2	102
24	A Hox regulatory network of hindbrain segmentation is conserved to the base of vertebrates. Nature, 2014, 514, 490-493.	27.8	88
25	Development and evolution of the migratory neural crest: a gene regulatory perspective. Current Opinion in Genetics and Development, 2006, 16, 360-366.	3.3	87
26	Dynamic transcriptional signature and cell fate analysis reveals plasticity of individual neural plate border cells. ELife, 2017, 6, .	6.0	84
27	Identification of a neural crest stem cell niche by Spatial Genomic Analysis. Nature Communications, 2017, 8, 1830.	12.8	82
28	Evolution of the new head by gradual acquisition of neural crest regulatory circuits. Nature, 2019, 574, 675-678.	27.8	74
29	Formation and migration of neural crest cells in the vertebrate embryo. Histochemistry and Cell Biology, 2012, 138, 179-186.	1.7	73
30	Epigenetic regulation in neural crest development. Developmental Biology, 2014, 396, 159-168.	2.0	73
31	Conservation of Pax gene expression in ectodermal placodes of the lamprey. Gene, 2002, 287, 129-139.	2.2	70
32	Corneal keratocytes retain neural crest progenitor cell properties. Developmental Biology, 2005, 288, 284-293.	2.0	70
33	Evolution of the neural crest viewed from a gene regulatory perspective. Genesis, 2008, 46, 673-682.	1.6	69
34	DNA methyltransferase3A as a molecular switch mediating the neural tube-to-neural crest fate transition. Genes and Development, 2012, 26, 2380-2385.	5.9	67
35	A PHD12–Snail2 repressive complex epigenetically mediates neural crest epithelial-to-mesenchymal transition. Journal of Cell Biology, 2012, 198, 999-1010.	5. 2	65
36	Ancient evolutionary origin of vertebrate enteric neurons from trunk-derived neural crest. Nature, 2017, 544, 88-91.	27.8	65

#	Article	IF	CITATIONS
37	Animal models for studying neural crest development: is the mouse different?. Development (Cambridge), 2015, 142, 1555-1560.	2.5	63
38	Generating trunk neural crest from human pluripotent stem cells. Scientific Reports, 2016, 6, 19727.	3.3	63
39	Axud1 Integrates Wnt Signaling and Transcriptional Inputs to Drive Neural Crest Formation. Developmental Cell, 2015, 34, 544-554.	7.0	62
40	The vertebrate <i>Hox</i> gene regulatory network for hindbrain segmentation: Evolution and diversification. BioEssays, 2016, 38, 526-538.	2.5	61
41	Fate map and morphogenesis of presumptive neural crest and dorsal neural tube. Developmental Biology, 2009, 330, 221-236.	2.0	60
42	Epithelial to mesenchymal transition: New and old insights from the classical neural crest model. Seminars in Cancer Biology, 2012, 22, 411-416.	9.6	60
43	Evidence for dynamic rearrangements but lack of fate or position restrictions in premigratory avian trunk neural crest. Development (Cambridge), 2013, 140, 820-830.	2.5	59
44	The lamprey: A jawless vertebrate model system for examining origin of the neural crest and other vertebrate traits. Differentiation, 2014, 87, 44-51.	1.9	59
45	Optimization of CRISPR/Cas9 genome editing for loss-of-function in the early chick embryo. Developmental Biology, 2017, 432, 86-97.	2.0	59
46	Neural crest specification: tissues, signals, and transcription factors. Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 52-68.	5.9	58
47	Structural shifts of aldehyde dehydrogenase enzymes were instrumental for the early evolution of retinoid-dependent axial patterning in metazoans. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 226-231.	7.1	57
48	Sensational placodes: Neurogenesis in the otic and olfactory systems. Developmental Biology, 2014, 389, 50-67.	2.0	56
49	Molecular mechanisms of neural crest induction. Birth Defects Research Part C: Embryo Today Reviews, 2004, 72, 109-123.	3.6	55
50	A Sox10 enhancer element common to the otic placode and neural crest is activated by tissue-specific paralogs. Development (Cambridge), 2011, 138, 3689-3698.	2.5	54
51	Identification and dissection of a key enhancer mediating cranial neural crest specific expression of transcription factor, Ets-1. Developmental Biology, 2013, 382, 567-575.	2.0	52
52	Review: The Role of Neural Crest Cells in the Endocrine System. Endocrine Pathology, 2009, 20, 92-100.	9.0	51
53	A conserved regulatory program initiates lateral plate mesoderm emergence across chordates. Nature Communications, 2019, 10, 3857.	12.8	51
54	Molecular and tissue interactions governing induction of cranial ectodermal placodes. Developmental Biology, 2009, 332, 189-195.	2.0	50

#	Article	IF	Citations
55	Migration and diversification of the vagal neural crest. Developmental Biology, 2018, 444, S98-S109.	2.0	49
56	Cardiac neural crest contributes to cardiomyocytes in amniotes and heart regeneration in zebrafish. ELife, $2019, 8, .$	6.0	49
57	Sox10-dependent neural crest origin of olfactory microvillous neurons in zebrafish. ELife, 2013, 2, e00336.	6.0	48
58	From classical to current: Analyzing peripheral nervous system and spinal cord lineage and fate. Developmental Biology, 2015, 398, 135-146.	2.0	47
59	cMyc Regulates the Size of the Premigratory Neural Crest Stem Cell Pool. Cell Reports, 2016, 17, 2648-2659.	6.4	47
60	Draxin acts as a molecular rheostat of canonical Wnt signaling to control cranial neural crest EMT. Journal of Cell Biology, 2018, 217, 3683-3697.	5.2	47
61	A genome-wide assessment of the ancestral neural crest gene regulatory network. Nature Communications, 2019, 10, 4689.	12.8	46
62	Riding the crest to get a head: neural crest evolution in vertebrates. Nature Reviews Neuroscience, 2021, 22, 616-626.	10.2	46
63	A novel FoxD3 gene trap line reveals neural crest precursor movement and a role for FoxD3 in their specification. Developmental Biology, 2013, 374, 1-11.	2.0	43
64	Crestospheres: Long-Term Maintenance of Multipotent, Premigratory Neural Crest Stem Cells. Stem Cell Reports, 2015, 5, 499-507.	4.8	43
65	Hierarchy of regulatory events in sensory placode development. Current Opinion in Genetics and Development, 2004, 14, 520-526.	3.3	42
66	Epithelial-to-mesenchymal transition and different migration strategies as viewed from the neural crest. Current Opinion in Cell Biology, 2020, 66, 43-50.	5.4	42
67	Rbms3 functions in craniofacial development by posttranscriptionally modulating TGF- \hat{l}^2 signaling. Journal of Cell Biology, 2012, 199, 453-466.	5.2	39
68	Myosin-X is critical for migratory ability of Xenopus cranial neural crest cells. Developmental Biology, 2009, 335, 132-142.	2.0	38
69	A Hox-TALE regulatory circuit for neural crest patterning is conserved across vertebrates. Nature Communications, 2019, 10, 1189.	12.8	38
70	Enhanced expression of MycN/CIP2A drives neural crest toward a neural stem cell-like fate: Implications for priming of neuroblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7351-E7360.	7.1	37
71	InÂVivo Quantitative Imaging Provides Insights into Trunk Neural Crest Migration. Cell Reports, 2019, 26, 1489-1500.e3.	6.4	37
72	Adult tissue–derived neural crest-like stem cells: Sources, regulatory networks, and translational potential. Stem Cells Translational Medicine, 2020, 9, 328-341.	3.3	37

#	Article	IF	CITATIONS
73	Reprogramming Axial Level Identity to Rescue Neural-Crest-Related Congenital Heart Defects. Developmental Cell, 2020, 53, 300-315.e4.	7.0	37
74	Neural crest lineage analysis: from past to future trajectory. Development (Cambridge), 2020, 147, .	2.5	35
75	A Reporter Assay in Lamprey Embryos Reveals Both Functional Conservation and Elaboration of Vertebrate Enhancers. PLoS ONE, 2014, 9, e85492.	2.5	34
76	Expression of Sympathetic Nervous System Genes in Lamprey Suggests Their Recruitment for Specification of a New Vertebrate Feature. PLoS ONE, 2011, 6, e26543.	2.5	33
77	Meis3 is required for neural crest invasion of the gut during zebrafish enteric nervous system development. Molecular Biology of the Cell, 2015, 26, 3728-3740.	2.1	33
78	A catenin-dependent balance between N-cadherin and E-cadherin controls neuroectodermal cell fate choices. Mechanisms of Development, 2018, 152, 44-56.	1.7	33
79	Filling in the phylogenetic gaps: Induction, migration, and differentiation of neural crest cells in a squamate reptile, the veiled chameleon (<scp><i>Chamaeleo calyptratus</i></scp>). Developmental Dynamics, 2019, 248, 709-727.	1.8	33
80	De novo enteric neurogenesis in post-embryonic zebrafish from Schwann cell precursors rather than resident cell types. Development (Cambridge), 2020, 147, .	2.5	33
81	Differentiation of the vertebrate neural tube. Current Opinion in Cell Biology, 1997, 9, 885-891.	5.4	32
82	Altering Glypican-1 levels modulates canonical Wnt signaling during trigeminal placode development. Developmental Biology, 2010, 348, 107-118.	2.0	32
83	Both neural crest and placode contribute to the ciliary ganglion and oculomotor nerve. Developmental Biology, 2003, 263, 176-190.	2.0	31
84	Temporally and spatially restricted expression of the helix–loop–helix transcriptional regulator ld1 during avian embryogenesis. Mechanisms of Development, 2001, 109, 331-335.	1.7	29
85	Neural expression of mouse Noelin-1/2 and comparison with other vertebrates. Mechanisms of Development, 2002, 119, 121-125.	1.7	29
86	Planar cell polarity signaling coordinates oriented cell division and cell rearrangement in clonally expanding growth plate cartilage. ELife, 2017, 6, .	6.0	29
87	Retinoic acid temporally orchestrates colonization of the gut by vagal neural crest cells. Developmental Biology, 2018, 433, 17-32.	2.0	29
88	Draxin alters laminin organization during basement membrane remodeling to control cranial neural crest EMT. Developmental Biology, 2019, 446, 151-158.	2.0	29
89	Molecular analysis of neural crest formation. Journal of Physiology (Paris), 2002, 96, 3-8.	2.1	28
90	Dual developmental role of transcriptional regulator Ets1 in Xenopus cardiac neural crest vs. heart mesoderm. Cardiovascular Research, 2015, 106, 67-75.	3.8	28

#	Article	IF	CITATIONS
91	A systems level approach reveals new gene regulatory modules in the developing ear. Development (Cambridge), 2017, 144, 1531-1543.	2.5	28
92	Intracellular attenuation of BMP signaling via CKIP-1/Smurf1 is essential during neural crest induction. PLoS Biology, 2018, 16, e2004425.	5.6	28
93	Schwann cell precursors represent a neural crestâ€like state with biased multipotency. EMBO Journal, 2022, 41, .	7.8	28
94	Birth of ophthalmic trigeminal neurons initiates early in the placodal ectoderm. Journal of Comparative Neurology, 2009, 514, 161-173.	1.6	27
95	Ancient Pbx-Hox signatures define hundreds of vertebrate developmental enhancers. BMC Genomics, 2011, 12, 637.	2.8	27
96	A fate-map for cranial sensory ganglia in the sea lamprey. Developmental Biology, 2014, 385, 405-416.	2.0	27
97	Histone demethylase KDM4B regulates otic vesicle invagination via epigenetic control of Dlx3 expression. Journal of Cell Biology, 2015, 211, 815-827.	5.2	27
98	SnapShot: Neural Crest. Cell, 2010, 143, 486-486.e1.	28.9	26
99	DNA methyltransferase 3B regulates duration of neural crest production via repression of <i>Sox10</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17911-17916.	7.1	25
100	Gene duplications and the early evolution of neural crest development. Seminars in Cell and Developmental Biology, 2013, 24, 95-100.	5.0	24
101	Laminin \hat{I}^21a controls distinct steps during the establishment of digestive organ laterality. Development (Cambridge), 2013, 140, 2734-2745.	2.5	24
102	The epigenetic modifier DNMT3A is necessary for proper otic placode formation. Developmental Biology, 2016, 411, 294-300.	2.0	24
103	Single-cell atlas of early chick development reveals gradual segregation of neural crest lineage from the neural plate border during neurulation. ELife, 2022, 11 , .	6.0	24
104	Avian neural crest cell fate decisions: a diffusible signal mediates induction of neural crest by the ectoderm. International Journal of Developmental Neuroscience, 2000, 18, 621-627.	1.6	23
105	Reprogramming Postnatal Human Epidermal Keratinocytes Toward Functional Neural Crest Fates. Stem Cells, 2017, 35, 1402-1415.	3.2	23
106	Transcriptome profiling of the cardiac neural crest reveals a critical role for MafB. Developmental Biology, 2018, 444, S209-S218.	2.0	23
107	The transcriptional regulator Id3 is expressed in cranial sensory placodes during early avian embryonic development. Mechanisms of Development, 2001, 109, 337-340.	1.7	22
108	Tracking neural crest cell cycle progression <i>in vivo</i> . Genesis, 2018, 56, e23214.	1.6	22

#	Article	IF	Citations
109	Expression and function of transcription factor cMyb during cranial neural crest development. Mechanisms of Development, 2014, 132, 38-43.	1.7	21
110	Neural crest stem cells from human epidermis of aged donors maintain their multipotency in vitro and in vivo. Scientific Reports, 2019, 9, 9750.	3.3	21
111	An atlas of anterior hox gene expression in the embryonic sea lamprey head: Hox-code evolution in vertebrates. Developmental Biology, 2019, 453, 19-33.	2.0	21
112	Ancestral network module regulating <i>prdm1</i> expression in the lamprey neural plate border. Developmental Dynamics, 2011, 240, 2265-2271.	1.8	20
113	Preface: the neural crestâ€"From stem cell formation to migration and differentiation. Developmental Biology, 2012, 366, 1.	2.0	20
114	Insights into neural crest development from studies of avian embryos. International Journal of Developmental Biology, 2018, 62, 183-194.	0.6	20
115	Evolutionarily conserved role for SoxC genes in neural crest specification and neuronal differentiation. Developmental Biology, 2015, 397, 282-292.	2.0	19
116	Hypoxia inducible factorâ€2α importance for migration, proliferation, and selfâ€renewal of trunk neural crest cells. Developmental Dynamics, 2021, 250, 191-236.	1.8	19
117	Bimodal function of chromatin remodeler Hmga1 in neural crest induction and Wnt-dependent emigration. ELife, 2020, 9, .	6.0	19
118	Making Sense of the Sensory Lineage. Science, 2004, 303, 966-968.	12.6	18
119	The tight junction protein claudin-1 influences cranial neural crest cell emigration. Mechanisms of Development, 2012, 129, 275-283.	1.7	17
120	Pth4, an ancient parathyroid hormone lost in eutherian mammals, reveals a new brainâ€toâ€bone signaling pathway. FASEB Journal, 2017, 31, 569-583.	0.5	17
121	Multiplex clonal analysis in the chick embryo using retrovirally-mediated combinatorial labeling. Developmental Biology, 2019, 450, 1-8.	2.0	17
122	Macropinocytosis-mediated membrane recycling drives neural crest migration by delivering F-actin to the lamellipodium. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27400-27411.	7.1	17
123	Elk3 is essential for the progression from progenitor to definitive neural crest cell. Developmental Biology, 2013, 374, 255-263.	2.0	16
124	SOXE neofunctionalization and elaboration of the neural crest during chordate evolution. Scientific Reports, 2016, 6, 34964.	3.3	16
125	Maintaining multipotent trunk neural crest stem cells as self-renewing crestospheres. Developmental Biology, 2019, 447, 137-146.	2.0	16
126	Clonal analysis and dynamic imaging identify multipotency of individual Gallus gallus caudal hindbrain neural crest cells toward cardiac and enteric fates. Nature Communications, 2021, 12, 1894.	12.8	16

#	Article	IF	CITATIONS
127	Gene regulatory networks that control the specification of neural-crest cells in the lamprey. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2009, 1789, 274-278.	1.9	15
128	Expression of Sox family genes in early lamprey development. International Journal of Developmental Biology, 2012, 56, 377-383.	0.6	15
129	Epigenetic inactivation of miR-203 as a key step in neural crest epithelial-to-mesenchymal transition. Development (Cambridge), 2019, 146, .	2.5	15
130	Hmx gene conservation identifies the origin of vertebrate cranial ganglia. Nature, 2022, 605, 701-705.	27.8	15
131	Clonal analyses in the anterior pre-placodal region: implications for the early lineage bias of placodal progenitors. International Journal of Developmental Biology, 2013, 57, 753-757.	0.6	14
132	Tissue specific regulation of the chick Sox10E1 enhancer by different Sox family members. Developmental Biology, 2017, 422, 47-57.	2.0	13
133	Leukocyte Receptor Tyrosine Kinase interacts with secreted midkine to promote survival of migrating neural crest cells. Development (Cambridge), 2018, 145, .	2.5	13
134	EWS-FLI1 Causes Neuroepithelial Defects and Abrogates Emigration of Neural Crest Stem Cells. Stem Cells, 2008, 26, 2237-2244.	3.2	12
135	Znf385C mediates a novel p53-dependent transcriptional switch to control timing of facial bone formation. Developmental Biology, 2015, 400, 23-32.	2.0	12
136	Confetti Clarifies Controversy: Neural Crest Stem Cells Are Multipotent. Cell Stem Cell, 2015, 16, 217-218.	11.1	12
137	Evolution of the vertebrate claudin gene family: insights from a basal vertebrate, the sea lamprey. International Journal of Developmental Biology, 2016, 60, 39-51.	0.6	12
138	Essential function and targets of BMP signaling during midbrain neural crest delamination. Developmental Biology, 2021, 477, 251-261.	2.0	12
139	Evolution of new cell types at the lateral neural border. Current Topics in Developmental Biology, 2021, 141, 173-205.	2.2	11
140	Identification of candidate secreted factors involved in trigeminal placode induction. Developmental Dynamics, 2007, 236, 2925-2935.	1.8	10
141	The transcription factor chicken Scratch2 is expressed in a subset of early postmitotic neural progenitors. Gene Expression Patterns, 2013, 13, 189-196.	0.8	10
142	Saving face: rescuing a craniofacial birth defect. Nature Medicine, 2008, 14, 115-116.	30.7	9
143	Transcriptome dataset of trunk neural crest cells migrating along the ventral pathway of chick embryos. Data in Brief, 2018, 21, 2547-2553.	1.0	9
144	Schwann cell precursors: Where they come from and where they go. Cells and Development, 2021, 166, 203686.	1.5	9

#	Article	IF	Citations
145	Biphasic influence of Miz1 on neural crest development by regulating cell survival and apical adhesion complex formation in the developing neural tube. Molecular Biology of the Cell, 2014, 25, 347-355.	2.1	8
146	On the crest of becoming vertebrate. Nature, 2015, 527, 311-312.	27.8	8
147	Migratory patterns and evolutionary plasticity of cranial neural crest cells in ray-finned fishes. Developmental Biology, 2020, 467, 14-29.	2.0	8
148	Human Fetal Keratocytes Have Multipotent Characteristics in the Developing Avian Embryo. Stem Cells and Development, 2013, 22, 2186-2195.	2.1	7
149	Targeted Pth4-expressing cell ablation impairs skeletal mineralization in zebrafish. PLoS ONE, 2017, 12, e0186444.	2.5	7
150	A single-plasmid approach for genome editing coupled with long-term lineage analysis in chick embryos. Development (Cambridge), 2021, 148, .	2.5	7
151	Efficient CRISPR Mutagenesis in Sturgeon Demonstrates Its Utility in Large, Slow-Maturing Vertebrates. Frontiers in Cell and Developmental Biology, 2022, 10, 750833.	3.7	7
152	Tetraspanin, CD151, is required for maintenance of trigeminal placode identity. Journal of Neurochemistry, 2011, 117, 221-230.	3.9	6
153	Zebrafish Stem/Progenitor Factormsi2bExhibits Two Phases of Activity Mediated by Different Splice Variants. Stem Cells, 2014, 32, 558-571.	3.2	6
154	A novel subset of enteric neurons revealed by $\langle i \rangle$ ptf1a $\langle i \rangle$:GFP in the developing zebrafish enteric nervous system. Genesis, 2016, 54, 123-128.	1.6	6
155	Transcriptomic Identification of Draxin-Responsive Targets During Cranial Neural Crest EMT. Frontiers in Physiology, 2021, 12, 624037.	2.8	6
156	Analysis of lamprey meis genes reveals that conserved inputs from Hox, Meis and Pbx proteins control their expression in the hindbrain and neural tube. Developmental Biology, 2021, 479, 61-76.	2.0	6
157	Seq Your Destiny: Neural Crest Fate Determination in the Genomic Era. Annual Review of Genetics, 2021, 55, 349-376.	7.6	5
158	Early regulative ability of the neuroepithelium to form cardiac neural crest. Developmental Biology, 2011, 349, 238-249.	2.0	4
159	Live imaging of endogenous periodic tryptophan protein 2 gene homologue during zebrafish development. Developmental Dynamics, 2011, 240, 2578-2583.	1.8	4
160	Live imaging of endogenous Collapsin response mediator protein-1 expression at subcellular resolution during zebrafish nervous system development. Gene Expression Patterns, 2011, 11, 395-400.	0.8	3
161	Stage-dependent plasticity of the anterior neural folds to form neural crest. Differentiation, 2014, 88, 42-50.	1.9	3
162	Riding the crest for 150 years!. Developmental Biology, 2018, 444, S1-S2.	2.0	3

#	Article	IF	CITATIONS
163	Reprint of: Schwann cell precursors: Where they come from and where they go. Cells and Development, 2021, 168, 203729.	1.5	3
164	A Spectrum of Cell States During the Epithelial-to-Mesenchymal Transition. Methods in Molecular Biology, 2021, 2179, 3-6.	0.9	3
165	Whole gut imaging allows quantification of all enteric neurons in the adult zebrafish intestine. Neurogastroenterology and Motility, 2022, 34, e14292.	3.0	3
166	Additivity of the effects of salt and ethylene glycol on DNA circular dichroism. Biopolymers, 1976, 15, 589-590.	2.4	2
167	A career at the interface of cell and developmental biology: a view from the crest. Molecular Biology of the Cell, 2012, 23, 4151-4153.	2.1	2
168	Neurogenesis and Migration., 2013,, 339-361.		2
169	Migrating into Genomics with the Neural Crest. Advances in Biology, 2014, 2014, 1-8.	1.2	2
170	Comparative Development of Cyclostomes. , 2018, , 30-58.		2
171	UNESCO issues a powerful endorsement of Open Science. Natural Sciences, 2022, 2, .	2.1	2
172	Epigenetic Regulation of Neural Crest Cells. , 2014, , 89-100.		1
173	A novel HoxB cluster protein expressed in the hindbrain and pharyngeal arches. Genesis, 2014, 52, 858-863.	1.6	1
174	How inhibitory cues can both constrain and promote cell migration. Journal of Cell Biology, 2016, 213, 505-507.	5.2	1
175	Retroviral lineage analysis reveals dual contribution from ectodermal placodes and neural crest cells to avian olfactory sensory and GnRH neurons. Natural Sciences, 2022, 2, .	2.1	1
176	ILFâ€3 is a regulator of the neural plate border marker Zic1 in chick embryos. Developmental Dynamics, 2012, 241, 1325-1332.	1.8	0
177	Bioinformatic Analysis of Nematode Migration-Associated Genes Identifies Novel Vertebrate Neural Crest Markers. PLoS ONE, 2014, 9, e103024.	2.5	0
178	Letter from the editor – issue 399/1–1 March 2015. Developmental Biology, 2015, 399, 1.	2.0	0
179	Evidence for dynamic rearrangements but lack of fate or position. FASEB Journal, 2013, 27, 965.1.	0.5	0
180	<i>Natural Sciences</i> is debuting. Natural Sciences, 2021, 1, .	2.1	0