List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9227832/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metagenomic Analysis of Kimchi, a Traditional Korean Fermented Food. Applied and Environmental Microbiology, 2011, 77, 2264-2274.	3.1	416
2	Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones. PLoS Biology, 2004, 2, e162.	5.6	290
3	Metatranscriptomic analysis of lactic acid bacterial gene expression during kimchi fermentation. International Journal of Food Microbiology, 2013, 163, 171-179.	4.7	133
4	Comparative Genomics Reveals Adaptation by Alteromonas sp. SN2 to Marine Tidal-Flat Conditions: Cold Tolerance and Aromatic Hydrocarbon Metabolism. PLoS ONE, 2012, 7, e35784.	2.5	132
5	Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tags. Plant Cell Reports, 2003, 22, 224-230.	5.6	109
6	KDM3B Is the H3K9 Demethylase Involved in Transcriptional Activation of <i>lmo2</i> in Leukemia. Molecular and Cellular Biology, 2012, 32, 2917-2933.	2.3	99
7	A model for obesity and gigantism due to disruption of the <i>Ankrd26</i> gene. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 270-275.	7.1	79
8	NGEP, a gene encoding a membrane protein detected only in prostate cancer and normal prostate. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3059-3064.	7.1	74
9	<i>Escherichia coli</i> ribonuclease III activity is downregulated by osmotic stress: consequences for the degradation of <i>bdm</i> mRNA in biofilm formation. Molecular Microbiology, 2010, 75, 413-425.	2.5	71
10	Topology of NGEP, a Prostate-Specific Cell:Cell Junction Protein Widely Expressed in Many Cancers of Different Grade Level. Cancer Research, 2008, 68, 6306-6312.	0.9	64
11	Mesothelin, Stereocilin, and Otoancorin are predicted to have superhelical structures with ARM-type repeats. BMC Structural Biology, 2009, 9, 1.	2.3	64
12	POTE Paralogs Are Induced and Differentially Expressed in Many Cancers. Cancer Research, 2006, 66, 52-56.	0.9	59
13	Metagenomic analysis of the human microbiome reveals the association between the abundance of gut bile salt hydrolases and host health. Gut Microbes, 2020, 11, 1300-1313.	9.8	59
14	Gene Tree Discordance Can Generate Patterns of Diminishing Convergence over Time. Molecular Biology and Evolution, 2016, 33, 3299-3307.	8.9	58
15	PATE Gene Clusters Code for Multiple, Secreted TFP/Ly-6/uPAR Proteins That Are Expressed in Reproductive and Neuron-rich Tissues and Possess Neuromodulatory Activity. Journal of Biological Chemistry, 2008, 283, 16928-16939.	3.4	54
16	Identification of nine human-specific frameshift mutations by comparative analysis of the human and the chimpanzee genome sequences. Bioinformatics, 2005, 21, i186-i194.	4.1	53
17	Finding fusion genes resulting from chromosome rearrangement by analyzing the expressed sequence databases. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13257-13261.	7.1	52
18	Divergent rRNAs as regulators of gene expression at the ribosome level. Nature Microbiology, 2019, 4, 515-526.	13.3	52

#	Article	IF	CITATIONS
19	<i>Mit1</i> / <i>Lb9</i> and <i>Copg2</i> , new members of mouse imprinted genes closely linked to <i>Peg1</i> / <i>Mest</i> . FEBS Letters, 2000, 472, 230-234.	2.8	51
20	Structure and Expression of the Tenecin 3 Gene inTenebrio molitor. Biochemical and Biophysical Research Communications, 1996, 218, 6-11.	2.1	50
21	<i>LRRC3B</i> , Encoding a Leucine-Rich Repeat-Containing Protein, Is a Putative Tumor Suppressor Gene in Gastric Cancer. Cancer Research, 2008, 68, 7147-7155.	0.9	49
22	NGEP, a Prostate-Specific Plasma Membrane Protein that Promotes the Association of LNCaP Cells. Cancer Research, 2007, 67, 1594-1601.	0.9	48
23	Antiobesity effect of baicalin involves the modulations of proadipogenic and antiadipogenic regulators of the adipogenesis pathway. Phytotherapy Research, 2009, 23, 1615-1623.	5.8	47
24	Duplication and extensive remodeling shaped POTE family genes encoding proteins containing ankyrin repeat and coiled coil domains. Gene, 2006, 366, 238-245.	2.2	42
25	Evolution and expression of chimeric POTE–actin genes in the human genome. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17885-17890.	7.1	42
26	Anoctamin and transmembrane channel-like proteins are evolutionarily related. International Journal of Molecular Medicine, 2009, 24, 51-5.	4.0	42
27	Identification of novel RNA viruses in alfalfa (Medicago sativa): an Alphapartitivirus , a Deltapartitivirus, and a Marafivirus. Gene, 2018, 638, 7-12.	2.2	37
28	H3K9 methyltransferase G9a negatively regulates UHRF1 transcription during leukemia cell differentiation. Nucleic Acids Research, 2015, 43, 3509-3523.	14.5	35
29	Negative Regulation of JAK2 by H3K9 Methyltransferase G9a in Leukemia. Molecular and Cellular Biology, 2012, 32, 3681-3694.	2.3	33
30	Human-specific nonsense mutations identified by genome sequence comparisons. Human Genetics, 2006, 119, 169-178.	3.8	32
31	Identification of human-specific transcript variants induced by DNA insertions in the human genome. Bioinformatics, 2011, 27, 14-21.	4.1	31
32	Gene cataloging and expression profiling in human gastric cancer cells by expressed sequence tags. Genomics, 2004, 83, 1024-1045.	2.9	29
33	Identification of the genes encoding enzymes involved in the early biosynthetic pathway of pteridines inSynechocystissp. PCC 6803. FEMS Microbiology Letters, 1999, 176, 169-176.	1.8	26
34	H3K9 histone methyltransferase G9aâ€mediated transcriptional activation of <i>p21</i> . FEBS Letters, 2014, 588, 685-691.	2.8	26
35	Rapid grouping of monoclonal antibodies based on their topographical epitopes by a label-free competitive immunoassay. Journal of Immunological Methods, 2004, 292, 141-155.	1.4	24
36	Transcriptome analysis of human gastric cancer. Mammalian Genome, 2005, 16, 942-954.	2.2	23

ΥΟΟΝSOO **Η**ΑΗΝ

#	Article	IF	CITATIONS
37	Inactivation of MOXD2 and S100A15A by Exon Deletion during Human Evolution. Molecular Biology and Evolution, 2007, 24, 2203-2212.	8.9	23
38	The RNA Polymerase II C-terminal Domain-interacting Domain of Yeast Nrd1 Contributes to the Choice of Termination Pathway and Couples to RNA Processing by the Nuclear Exosome. Journal of Biological Chemistry, 2013, 288, 36676-36690.	3.4	21
39	Identification of Two Novel Amalgaviruses in the Common Eelgrass (Zostera marina) and in Silico Analysis of the Amalgavirus +1 Programmed Ribosomal Frameshifting Sites. Plant Pathology Journal, 2018, 34, 150-156.	1.7	21
40	The effects of increasing the number of taxa on inferences of molecular convergence. Genome Biology and Evolution, 2017, 9, evw306.	2.5	20
41	Selective POTE Paralogs on Chromosome 2 are Expressed in Human Embryonic Stem Cells. Stem Cells and Development, 2008, 17, 325-332.	2.1	19
42	The α-barrel tip region of Escherichia coli TolC homologs of Vibrio vulnificus interacts with the MacA protein to form the functional macrolide-specific efflux pump MacAB-TolC. Journal of Microbiology, 2013, 51, 154-159.	2.8	19
43	Genome-wide transcriptional responses of Alteromonas naphthalenivorans SN2 to contaminated seawater and marine tidal flat sediment. Scientific Reports, 2016, 6, 21796.	3.3	18
44	An alternative miRISC targets a cancerâ€associated coding sequence mutation in FOXL2. EMBO Journal, 2020, 39, e104719.	7.8	18
45	Accurate quantitation of allele-specific expression patterns by analysis of DNA melting. Genome Research, 2007, 17, 1093-1100.	5.5	17
46	Identification of novel phosphorylation modification sites in human proteins that originated after the human–chimpanzee divergence. Bioinformatics, 2011, 27, 2494-2501.	4.1	17
47	Cellular Dynamics of Rad51 and Rad54 in Response to Postreplicative Stress and DNA Damage in HeLa Cells. Molecules and Cells, 2017, 40, 143-150.	2.6	16
48	Diet-Related Alterations of Gut Bile Salt Hydrolases Determined Using a Metagenomic Analysis of the Human Microbiome. International Journal of Molecular Sciences, 2021, 22, 3652.	4.1	15
49	Heat Shock RNA 1, Known as a Eukaryotic Temperature-Sensing Noncoding RNA, Is of Bacterial Origin. Journal of Microbiology and Biotechnology, 2015, 25, 1234-1240.	2.1	15
50	Genome Sequences of Spinach Deltapartitivirus 1, Spinach Amalgavirus 1, and Spinach Latent Virus Identified in Spinach Transcriptome. Journal of Microbiology and Biotechnology, 2017, 27, 1324-1330.	2.1	15
51	Evidence for bacterial origin of heat shock RNA-1. Rna, 2010, 16, 274-279.	3.5	14
52	Regulation of Escherichia coli RNase III activity. Journal of Microbiology, 2015, 53, 487-494.	2.8	14
53	Human-specific antisense transcripts induced by the insertion of transposable element. International Journal of Molecular Medicine, 2010, 26, 151-7.	4.0	14
54	Characterization of JDP genes, an evolutionarily conserved J domain-only protein family, from human and moths. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1491, 355-363.	2.4	13

#	Article	IF	CITATIONS
55	Gains of ubiquitylation sites in highly conserved proteins in the human lineage. BMC Bioinformatics, 2012, 13, 306.	2.6	13
56	The acquisition of novel N-glycosylation sites in conserved proteins during human evolution. BMC Bioinformatics, 2015, 16, 29.	2.6	13
57	Genomic and metatranscriptomic analyses of carbon remineralization in an Antarctic polynya. Microbiome, 2019, 7, 29.	11.1	13
58	Structural analysis of phylogenetically conserved J domain protein gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1447, 325-333.	2.4	11
59	TEPP, a new gene specifically expressed in testis, prostate, and placenta and well conserved in chordates. Biochemical and Biophysical Research Communications, 2003, 312, 1209-1215.	2.1	11
60	Analysis of proteolytic processing sites in potyvirus polyproteins revealed differential amino acid preferences of NIa-Pro protease in each of seven cleavage sites. PLoS ONE, 2021, 16, e0245853.	2.5	11
61	Cloning of mouse sepiapterin reductase gene and characterization of its promoter region. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1445, 165-171.	2.4	10
62	Duplication of genes encoding non-clathrin coat protein Î ³ -COP in vertebrate, insect and plant evolution. FEBS Letters, 2000, 482, 31-36.	2.8	10
63	Structure and expression of the zebrafish mest gene, an ortholog of mammalian imprinted gene PEG1/MEST. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2005, 1731, 125-132.	2.4	10
64	Identification of a novel plant RNA virus species of the genus Amalgavirus in the family Amalgaviridae from chia (Salvia hispanica). Genes and Genomics, 2019, 41, 507-514.	1.4	10
65	Two novel closteroviruses, fig virus A and fig virus B, identified by the analysis of the high-throughput RNA-sequencing data of fig (Ficus carica) latex. Acta Virologica, 2021, 65, 42-48.	0.8	10
66	Transcriptional regulation of 1-cys peroxiredoxin by the proto-oncogene protein DEK. Molecular Medicine Reports, 2010, 3, 877-81.	2.4	9
67	Loss of gene function and evolution of human phenotypes. BMB Reports, 2015, 48, 373-379.	2.4	9
68	Genomic structure and expression of murine poly(A) binding protein II gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1395, 40-46.	2.4	8
69	The coordinated action of RNase III and RNase G controls enolase expression in response to oxygen availability in Escherichia coli. Scientific Reports, 2019, 9, 17257.	3.3	8
70	Meiosis-specific cohesin complexes display essential and distinct roles in mitotic embryonic stem cell chromosomes. Genome Biology, 2022, 23, 70.	8.8	8
71	Frequent Loss and Alteration of the MOXD2 Gene in Catarrhines and Whales: A Possible Connection with the Evolution of Olfaction. PLoS ONE, 2014, 9, e104085.	2.5	7
72	Non-AUG translational initiation of a short CAPC transcript generating protein isoform. Biochemical and Biophysical Research Communications, 2009, 380, 508-513.	2.1	6

#	Article	IF	CITATIONS
73	Identification of sequence features that predict competition potency of siRNAs. Biochemical and Biophysical Research Communications, 2010, 398, 92-97.	2.1	6
74	Human-specific protein isoforms produced by novel splice sites in the human genome after the human-chimpanzee divergence. BMC Bioinformatics, 2012, 13, 299.	2.6	6
75	Reference Materials for Calibration of Analytical Biases in Quantification of DNA Methylation. PLoS ONE, 2015, 10, e0137006.	2.5	6
76	Rapid protein sequence evolution via compensatory frameshift is widespread in RNA virus genomes. BMC Bioinformatics, 2021, 22, 251.	2.6	6
77	Genome Sequence of Spinach Cryptic Virus 1, a New Member of the Genus Alphapartitivirus (Family) Tj ETQq1 1	0.784314 2.1	l rgBT /Over
78	Eisenstasin, new antistasin family inhibitor from the earthworm. Biologia (Poland), 2010, 65, 284-288.	1.5	5
79	Retroduplication and loss of parental genes is a mechanism for the generation of intronless genes in Ciona intestinalis and Ciona savignyi. Development Genes and Evolution, 2014, 224, 255-260.	0.9	5
80	SiNG-PCRseq: Accurate inter-sequence quantification achieved by spiking-in a neighbor genome for competitive PCR amplicon sequencing. Scientific Reports, 2015, 5, 11879.	3.3	5
81	Loss of ancestral N-glycosylation sites in conserved proteins during human evolution. International Journal of Molecular Medicine, 2015, 36, 1685-1692.	4.0	5
82	Genome sequence of a distinct watermelon mosaic virus identified from ginseng (Panax ginseng) transcriptome. Acta Virologica, 2017, 61, 479-482.	0.8	5
83	A novel tepovirus, Agave virus T, identified by the analysis of the transcriptome data of blue agave (Agave tequilana). Acta Virologica, 2021, 65, 68-71.	0.8	5
84	Plant RNA Virus Sequences Identified in Kimchi by Microbial Metatranscriptome Analysis. Journal of Microbiology and Biotechnology, 2014, 24, 979-986.	2.1	5
85	A 2.7-kb Deletion in the Human NLRP10 Gene Exon 2 Occurred After the Human–Chimpanzee Divergence. Biochemical Genetics, 2009, 47, 665-670.	1.7	4
86	Functional analysis of recombinant human and Yarrowia lipolytica O-GlcNAc transferases expressed in Saccharomyces cerevisiae. Journal of Microbiology, 2016, 54, 667-674.	2.8	4
87	Functional relevance of synonymous alleles reflected in allele rareness in the population. Genomics, 2018, 110, 347-354.	2.9	4
88	Deacetylase activity-independent transcriptional activation by HDAC2 during TPA-induced HL-60 cell differentiation. PLoS ONE, 2018, 13, e0202935.	2.5	4
89	Inactivation of the MSLNL gene encoding mesothelin-like protein during African great ape evolution. Gene, 2012, 496, 17-21.	2.2	3
90	ldentification of genome sequences of novel partitiviruses in the quinoa (Chenopodium quinoa) transcriptome datasets. Journal of General Plant Pathology, 2021, 87, 236-241.	1.0	3

#	Article	IF	CITATIONS
91	Molecular Evolution of TEPP Protein Genes in Metazoans. Biochemical Genetics, 2009, 47, 651-664.	1.7	2
92	MOXD2, a Gene Possibly Associated with Olfaction, Is Frequently Inactivated in Birds. PLoS ONE, 2016, 11, e0152431.	2.5	2
93	Exon deletion in the MSLN gene encoding MPF/mesothelin precursor protein during Laurasiatherian mammal evolution. International Journal of Molecular Medicine, 2011, 27, 289-93.	4.0	1
94	Identification of a Hyperactive Variant of the SecM Motif Involved in Ribosomal Arrest. Current Microbiology, 2012, 64, 17-23.	2.2	1
95	Evidence for the dissemination of cryptic non-coding RNAs transcribed from intronic and intergenic segments by retroposition. Bioinformatics, 2013, 29, 1593-1599.	4.1	1
96	Loss of conserved ubiquitylation sites in conserved proteins during human evolution. International Journal of Molecular Medicine, 2018, 42, 2203-2212.	4.0	1
97	Normalization of human RNA-seq experiments using chimpanzee RNA as a spike-in standard. Scientific Reports, 2016, 6, 31923.	3.3	0
98	Response to Veitia et al. EMBO Journal, 2021, 40, e108671.	7.8	0