
Ramon Pons

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9227800/publications.pdf Version: 2024-02-01

PAMON PONS

52

#	Article	IF	CITATIONS
1	Gemini surfactants from natural amino acids. Advances in Colloid and Interface Science, 2014, 205, 134-155.	14.7	142
2	Amino Acids as Raw Material for Biocompatible Surfactants. Industrial & Engineering Chemistry Research, 2011, 50, 4805-4817.	3.7	135
3	Stability, biocompatibility and antioxidant activity of PEG-modified liposomes containing resveratrol. International Journal of Pharmaceutics, 2018, 538, 40-47.	5.2	122
4	Effect of quercetin and resveratrol co-incorporated in liposomes against inflammatory/oxidative response associated with skin cancer. International Journal of Pharmaceutics, 2016, 513, 153-163.	5.2	115
5	Cationic surfactants from lysine: Synthesis, micellization and biological evaluation. European Journal of Medicinal Chemistry, 2009, 44, 1884-1892.	5.5	113
6	Cross-linked chitosan/liposome hybrid system for the intestinal delivery of quercetin. Journal of Colloid and Interface Science, 2016, 461, 69-78.	9.4	108
7	Study and formation of vesicle systems with low polydispersity index by ultrasound method. Chemistry and Physics of Lipids, 2006, 140, 88-97.	3.2	92
8	Studies on macro- and microstructures of highly concentrated water-in-oil emulsions (gel) Tj ETQq0 0 0 rgBT /Ov	erlgck 10 ⁻	Γf 50 462 Td
9	Physico-chemical characterization of succinyl chitosan-stabilized liposomes for the oral co-delivery of quercetin and resveratrol. Carbohydrate Polymers, 2017, 157, 1853-1861.	10.2	83
10	Topical Anti-Inflammatory Potential of Quercetin in Lipid-Based Nanosystems: In Vivo and In Vitro Evaluation. Pharmaceutical Research, 2014, 31, 959-968.	3.5	78
11	Formation and properties of miniemulsions formed by microemulsions dilution. Advances in Colloid and Interface Science, 2003, 106, 129-146.	14.7	73
12	Biomimetic Synthesis of Sub-20 nm Covalent Organic Frameworks in Water. Journal of the American Chemical Society, 2020, 142, 3540-3547.	13.7	68
13	Novel preparation methods for highly concentrated water-in-oil emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 91, 259-266.	4.7	60
14	Rheological Behavior of Highly Concentrated Oil-in-Water (o/w) Emulsions. Langmuir, 1995, 11, 1966-1971.	3.5	60

15	Viscoelastic properties of gel-emulsions: their relationship with structure and equilibrium properties. The Journal of Physical Chemistry, 1993, 97, 12320-12324.	2.9	59
16	Cationic Niosomes as Non-Viral Vehicles for Nucleic Acids: Challenges and Opportunities in Gene Delivery. Pharmaceutics, 2019, 11, 50.	4.5	59
17	Investigation of the Micellization Process of Single and Gemini Surfactants from Arginine by SAXS, NMR Self-Diffusion, and Light Scattering. Journal of Physical Chemistry B, 2007, 111, 11379-11387.	2.6	52

18Biocompatible surfactants from renewable hydrophiles. European Journal of Lipid Science and
Technology, 2010, 112, 110-121.1.5

#	Article	IF	CITATIONS
19	Supramolecular Properties of the Proline-Rich γ-Zein N-Terminal Domain. Biophysical Journal, 2002, 83, 1194-1204.	0.5	50
20	Niosomes based on synthetic cationic lipids for gene delivery: the influence of polar head-groups on the transfection efficiency in HEK-293, ARPE-19 and MSC-D1 cells. Organic and Biomolecular Chemistry, 2015, 13, 1068-1081.	2.8	50
21	Adsorption of polyphenols in wastewater by organo-bentonites. Applied Clay Science, 2009, 44, 151-155.	5.2	44
22	Conformational Changes in Stratum Corneum Lipids by Effect of Bicellar Systems. Langmuir, 2009, 25, 10595-10603.	3.5	43
23	Unconventional vesicle-to-ribbon transition behaviour of diacyl glycerol amino acid based surfactants in extremely diluted systems induced by pH-concentration effects. Physical Chemistry Chemical Physics, 2004, 6, 1475-1481.	2.8	42
24	Penetration and Growth of DPPC/DHPC Bicelles Inside the Stratum Corneum of the Skin. Langmuir, 2008, 24, 5700-5706.	3.5	42
25	Structural studies on gel emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 76, 171-177.	4.7	41
26	Complex rhamnolipid mixture characterization and its influence on DPPC bilayer organization. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 776-783.	2.6	41
27	Headgroup Effects on the Unusual Lamellarâ`'Lamellar Coexistence and Vesicle-to-Micelle Transition of Salt-Free Catanionic Amphiphiles. Langmuir, 2010, 26, 3058-3066.	3.5	39
28	Isolation and partial characterization of a biosurfactant mixture produced by Sphingobacterium sp. isolated from soil. Journal of Colloid and Interface Science, 2011, 361, 195-204.	9.4	39
29	Kinetic Studies of Liposome Solubilization by Sodium Dodecyl Sulfate Based on a Dynamic Light Scattering Technique. Langmuir, 1998, 14, 4671-4674.	3.5	36
30	Faceted phospholipid vesicles tailored for the delivery of Santolina insularis essential oil to the skin. Colloids and Surfaces B: Biointerfaces, 2015, 132, 185-193.	5.0	35
31	New cationic vesicles prepared with double chain surfactants from arginine: Role of the hydrophobic group on the antimicrobial activity and cytotoxicity. Colloids and Surfaces B: Biointerfaces, 2016, 141, 19-27.	5.0	35
32	Investigation of the Interaction between Emulsions and Suspensions (Suspoemulsions) Using Viscoelastic Measurements. The Journal of Physical Chemistry, 1995, 99, 12624-12630.	2.9	34
33	Application of Bicellar Systems on Skin: Diffusion and Molecular Organization Effects. Langmuir, 2010, 26, 10578-10584.	3.5	34
34	Self Assembly of pH-Sensitive Cationic Lysine Based Surfactants. Langmuir, 2012, 28, 16761-16771.	3.5	34
35	Nutriosomes: prebiotic delivery systems combining phospholipids, a soluble dextrin and curcumin to counteract intestinal oxidative stress and inflammation. Nanoscale, 2018, 10, 1957-1969.	5.6	32
36	Gemini histidine based surfactants: Characterization; surface properties and biological activity. Journal of Molecular Liquids, 2019, 289, 111156.	4.9	32

#	Article	IF	CITATIONS
37	Stability and rheological properties of gel emulsions. , 1992, , 110-113.		31
38	Structure Determination of a Highly Concentrated W/O Emulsion Using Pulsed-Field-Gradient Spinâ^'Echo Nuclear Magnetic Resonance "Diffusion Diffractograms― Langmuir, 1999, 15, 988-991.	3.5	31
39	Influence of Composition Variables on the Molecular Diffusion from Highly Concentrated Water-in-Oil Emulsions (Gelâ^'Emulsions). Langmuir, 1997, 13, 385-390.	3.5	30
40	Investigation of the interactions in emulsions stabilized by a polymeric surfactant and its mixtures with an anionic surfactant. Colloid and Polymer Science, 1997, 275, 769-776.	2.1	30
41	Catanionic Vesicles Formed with Arginine-Based Surfactants and 1,2-Dipalmitoyl-sn-glycero-3-phosphate Monosodium Salt. Journal of Physical Chemistry B, 2009, 113, 6321-6327.	2.6	30
42	Preparation of monodisperse silica particles in emulsion media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 123-124, 575-586.	4.7	28
43	A synthetic alternative to natural lecithins with antimicrobial properties. Colloids and Surfaces B: Biointerfaces, 2004, 35, 235-242.	5.0	28
44	Interaction studies of diacyl glycerol arginine-based surfactants with DPPC and DMPC monolayers, relation with antimicrobial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 319, 196-203.	4.7	28
45	Diacyl glycerol arginine-based surfactants: biological and physicochemical properties of catanionic formulations. Amino Acids, 2011, 40, 721-729.	2.7	28
46	Mixed Monolayer of DPPC and Lysine-Based Cationic Surfactants: An Investigation into the Antimicrobial Activity. Langmuir, 2013, 29, 7912-7921.	3.5	27
47	Use of a Dynamic Light Scattering Technique To Study the Kinetics of Liposome Solubilization By Triton X-100‖. Langmuir, 1999, 15, 4678-4681.	3.5	26
48	Effect of the Electrostatic Charge on the Mechanism Inducing Liposome Solubilization:Â A Kinetic Study by Synchrotron Radiation SAXS. Langmuir, 2004, 20, 3074-3079.	3.5	25
49	Bicellar systems to modify the phase behaviour of skin stratum corneum lipids. Physical Chemistry Chemical Physics, 2012, 14, 14523.	2.8	23
50	Supramolecular Arrangement of Molybdenum Carbonyl Metallosurfactants with CO-Releasing Properties. Organometallics, 2016, 35, 484-493.	2.3	23
51	Novel Biocompatible DNA Gel Particles. Langmuir, 2010, 26, 10606-10613.	3.5	22
52	Lamellar rearrangement of internal lipids from human hair. Chemistry and Physics of Lipids, 2008, 155, 1-6.	3.2	21
53	Atomic Model and Micelle Dynamics of QS-21 Saponin. Molecules, 2014, 19, 3744-3760.	3.8	21
54	Characterization and stability of catanionic vesicles formed by pseudo-tetraalkyl surfactant mixtures. Soft Matter, 2014, 10, 9657-9667.	2.7	21

#	Article	IF	CITATIONS
55	Diffraction-like effects in a highly concentrated w/o emulsion: a PFG NMR study. Magnetic Resonance Imaging, 1998, 16, 643-646.	1.8	20
56	Hydrophilic Model Drug Delivery from Concentrated Reverse Emulsions. Langmuir, 1998, 14, 6840-6845.	3.5	20
57	Diffusion from Hydrogenated and Fluorinated Gelâ^'Emulsion Mixtures. Langmuir, 1998, 14, 1580-1585.	3.5	20
58	Chiral Cyclobutane β-Amino Acid-Based Amphiphiles: Influence of <i>Cis</i> / <i>Trans</i> Stereochemistry on Solution Self-Aggregation and Recognition. Langmuir, 2015, 31, 9608-9618.	3.5	20
59	Santosomes as natural and efficient carriers for the improvement of phycocyanin reepithelising ability in vitro and in vivo. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 103, 149-158.	4.3	20
60	Effect of pH on Mandelic Acid Diffusion in Water in Oil Highly Concentrated Emulsions (Gel-Emulsions). Langmuir, 2000, 16, 1668-1674.	3.5	19
61	Structure/Property Relationships for the Thermotropic Behavior of Lysine-Based Amphiphiles: from Hexagonal to Smectic Phases. Journal of Physical Chemistry B, 2008, 112, 14877-14887.	2.6	19
62	Lysineâ^'Bisglycidol Conjugates as Novel Lysine Cationic Surfactants. Langmuir, 2009, 25, 7803-7814.	3.5	19
63	The production and physicochemical properties of a biosurfactant mixture obtained from Sphingobacterium detergens. Journal of Colloid and Interface Science, 2013, 394, 368-379.	9.4	19
64	Extraction, Purification and Nanoformulation of Natural Phycocyanin (from <i>Klamath</i>) Tj ETQq0 Nanotechnology, 2013, 9, 1929-1938.	0 0 rgBT / 1.1	Overlock 10 T 19
65	Effect of fatty acids on self-assembly of soybean lecithin systems. Colloids and Surfaces B: Biointerfaces, 2015, 131, 21-28.	5.0	19
66	Biocompatible Catanionic Vesicles from Arginine-Based Surfactants: A New Strategy to Tune the Antimicrobial Activity and Cytotoxicity of Vesicular Systems. Pharmaceutics, 2020, 12, 857.	4.5	19
67	Aggregation Properties of Diacyl Lysine Surfactant Compounds: Hydrophobic Chain Length and Counterion Effect. Journal of Physical Chemistry B, 2008, 112, 8578-8585.	2.6	18
68	Green cationic arginine surfactants: Influence of the polar head cationic character on the self-aggregation and biological properties. Journal of Molecular Liquids, 2021, 339, 116819.	4.9	17
69	How do closed-compact multi-lamellar droplets form under shear flow? A possible mechanism. Europhysics Letters, 2003, 61, 275-281.	2.0	16
70	A Unique Bicellar Nanosystem Combining Two Effects on Stratum Corneum Lipids. Molecular Pharmaceutics, 2012, 9, 482-491.	4.6	16
71	Enzymatic synthesis and physicochemical characterization of glycero arginine-based surfactants. Comptes Rendus Chimie, 2004, 7, 169-176.	O.5	15
72	Effect of Sodium Dodecyl Sulfate at Different Hydration Conditions on Dioleoyl Phosphatidylcholine Bilayers Studied by Grazing Incidence X-ray Diffraction. Langmuir, 2006, 22, 5256-5260.	3.5	15

#	Article	IF	CITATIONS
73	Peptide nanofibres as molecular transporters: from self-assembly to in vivo degradation. Faraday Discussions, 2013, 166, 181.	3.2	15
74	Structure and Phase Equilibria of the Soybean Lecithin/PEG 40 Monostearate/Water System. Langmuir, 2013, 29, 14369-14379.	3.5	15
75	Surface activity and aggregation of pristine and hydrophobically modified inulin. Soft Matter, 2012, 8, 11353.	2.7	14
76	Aggregation Behavior, Antibacterial Activity and Biocompatibility of Catanionic Assemblies Based on Amino Acid-Derived Surfactants. International Journal of Molecular Sciences, 2020, 21, 8912.	4.1	13
77	Chiral Cyclobutane β-Amino Acid-Based Amphiphiles: Influence of <i>Cis/Trans</i> Stereochemistry on Condensed Phase and Monolayer Structure. Langmuir, 2016, 32, 6977-6984.	3.5	13
78	Characterization of Microemulsions Formed in a Water/ABA Block Copolymer [Poly(hydroxystearic) Tj ETQq0 0 0 Langmuir, 2002, 18, 5673-5680.	rgBT /Ove 3.5	rlock 10 Tf 5 12
79	Investigation of the Thermotropic Behavior of Isomer Mixtures of Diacyl Arginine-Based Surfactants. Comparison of Polarized Light Microscopy, DSC, and SAXS Observations. Journal of Physical Chemistry B, 2004, 108, 11080-11088.	2.6	12
80	The nanostructure of surfactant–DNA complexes with different arrangements. Colloids and Surfaces B: Biointerfaces, 2013, 111, 663-671.	5.0	12
81	Nioplexes encapsulated in supramolecular hybrid biohydrogels as versatile delivery platforms for nucleic acids. RSC Advances, 2016, 6, 39688-39699.	3.6	12
82	The Effect of Molecular Shape on the Thermotropic Liquid Crystal Behavior of Monolauroylated Amino Acid Glyceride Conjugates. Journal of Physical Chemistry B, 2005, 109, 22899-22908.	2.6	11
83	Preparation and characterization of a supramolecular hydrogel made of phospholipids and oleic acid with a high water content. Journal of Materials Chemistry B, 2020, 8, 161-167.	5.8	11
84	Use of Synchrotron Radiation SAXS to Study the First Steps of the Interaction between Sodium Dodecyl Sulfate and Charged Liposomes. Spectroscopy, 2002, 16, 343-350.	0.8	10
85	Surface tension and adsorption behavior of mixtures of diacyl glycerol arginine-based surfactants with DPPC and DMPC phospholipids. Colloids and Surfaces B: Biointerfaces, 2009, 74, 67-74.	5.0	10
86	Arginine diacyl-glycerolipid conjugates as multifunctional biocompatible surfactants. Comptes Rendus Chimie, 2011, 14, 726-735.	0.5	10
87	Keratin cystine reactivity in microemulsion media: influence of cosurfactant chain length. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 119, 155-162.	4.7	9
88	Phase Behavior and Formation of Microemulsions in Water/Aâ^'Bâ^'A Block Copolymer (Polyhydroxystearic Acidâ^'Polyetylene Oxideâ^'Polyhydroxystearic Acid)/1,2-Alkanediol/Isopropyl Myristate Systems. Langmuir, 2002, 18, 1077-1081.	3.5	9
89	A Fourier transform infra-red spectroscopic study of wool subjected to permonosulphuric acid treatments. Coloration Technology, 2008, 107, 410-414.	0.1	9
90	Dynamic Properties of Cationic Diacyl-Glycerol-Arginine-Based Surfactant/Phospholipid Mixtures at the Air/Water Interface. Langmuir, 2010, 26, 2559-2566.	3.5	9

#	Article	IF	CITATIONS
91	Study of nonionic surfactant polarity by high-performance liquid chromatography. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 137, 287-293.	4.7	8
92	Investigations of the Interaction Between Suspensions and Emulsions (Suspoemulsions). , 1998, , 247-256.		8
93	Structure of Aggregates in Diluted Aqueous Octyl Glucoside/Tetraethylene Glycol Monododecyl Ether Mixtures with Different Alkanols. Langmuir, 2010, 26, 2256-2262.	3.5	8
94	Catanionic vesicles and DNA complexes: a strategy towards novel gene delivery systems. RSC Advances, 2015, 5, 81168-81175.	3.6	8
95	Cyclobutane Scaffold in Bolaamphiphiles: Effect of Diastereoisomerism and Regiochemistry on Their Surface Activity Aggregate Structure. Langmuir, 2018, 34, 11424-11432.	3.5	8
96	Arginine-Based Surfactants: Synthesis, Aggregation Properties, and Applications. , 2019, , 413-445.		8
97	Influence of water in the lamellar rearrangement of internal wool lipids. Colloids and Surfaces B: Biointerfaces, 2007, 60, 89-94.	5.0	7
98	Transfection of Antisense Oligonucleotides Mediated by Cationic Vesicles Based on Non-Ionic Surfactant and Polycations Bearing Quaternary Ammonium Moieties. International Journal of Molecular Sciences, 2017, 18, 1139.	4.1	7
99	Chiral pH-sensitive cyclobutane β-amino acid-based cationic amphiphiles: Possible candidates for use in gene therapy. Journal of Molecular Liquids, 2020, 297, 111856.	4.9	7
100	Pathway selection as a tool for crystal defect engineering: A case study with a functional coordination polymer. Applied Materials Today, 2020, 20, 100632.	4.3	7
101	Gemini Surfactant Binding onto Hydrophobically Modified Silica Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 12142-12148.	3.1	6
102	Influence of sodium sulfate or sodium sulfite on the solubilization of benzylalcohol in cationic micellar solutions. Colloid and Polymer Science, 1991, 269, 62-69.	2.1	5
103	Kinetic study of keratin cystine reduction in W/O microemulsion media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 143, 103-110.	4.7	5
104	Peptide Amphiphilic-Based Supramolecular Structures with Anti-HIV-1 Activity. Bioconjugate Chemistry, 2021, 32, 1999-2013.	3.6	5
105	Flow Properties of Multilamellar Droplets in AOT/Brine/Glycerol Mixtures. Journal of the Physical Society of Japan, 2004, 73, 2449-2452.	1.6	4
106	Protein-covered silica nano-particles adsorbing onto synthetic vesicles. Soft Matter, 2012, 8, 1361-1368.	2.7	4
107	A new automated system for the preparation of sclerosant foam: A study of the physical characteristics produced and the device settings required. Phlebology, 2020, 35, 724-733.	1.2	4
108	Gels formed from the interaction of lipid vesicles: Influence of charge in their structural and rheological properties. Journal of Molecular Liquids, 2021, 322, 114957.	4.9	4

#	Article	IF	CITATIONS
109	Monitoring the formation of a colloidal lipid gel at the nanoscale: vesicle aggregation driven by a temperature-induced mechanism. Journal of Materials Chemistry B, 2021, 9, 7472-7481.	5.8	4
110	New chiral polyfunctional cyclobutane derivatives from (â^')-verbenone: possible surfactant behaviour. Tetrahedron: Asymmetry, 2013, 24, 713-718.	1.8	3
111	Release of DNA and surfactant from gel particles: The receptor solution effect and the dehydration–hydration aspects. Colloids and Surfaces B: Biointerfaces, 2014, 123, 279-285.	5.0	3
112	MWNTs or PEG as Stability Enhancers for DNA–Cationic Surfactant Gel Particles. International Journal of Molecular Sciences, 2021, 22, 8801.	4.1	1