## Kevin L Schulte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9227644/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nature<br>Energy, 2020, 5, 326-335.                                                           | 39.5 | 408       |
| 2  | Building a Six-Junction Inverted Metamorphic Concentrator Solar Cell. IEEE Journal of Photovoltaics, 2018, 8, 626-632.                                                                      | 2.5  | 148       |
| 3  | Thermophotovoltaic efficiency of 40%. Nature, 2022, 604, 287-291.                                                                                                                           | 27.8 | 108       |
| 4  | Effect of crystal phase composition on the reductive and oxidative abilities of TiO2 nanotubes under<br>UV and visible light. Applied Catalysis B: Environmental, 2010, 97, 354-360.        | 20.2 | 100       |
| 5  | Gallium arsenide solar cells grown at rates exceeding 300 µm hâ~'1 by hydride vapor phase epitaxy.<br>Nature Communications, 2019, 10, 3361.                                                | 12.8 | 61        |
| 6  | Controlled exfoliation of (100) GaAs-based devices by spalling fracture. Applied Physics Letters, 2016, 108, .                                                                              | 3.3  | 60        |
| 7  | High-efficiency inverted metamorphic 1.7/1.1 eV GaInAsP/GaInAs dual-junction solar cells. Applied<br>Physics Letters, 2018, 112, .                                                          | 3.3  | 47        |
| 8  | III-V-Based Optoelectronics with Low-Cost Dynamic Hydride Vapor Phase Epitaxy. Crystals, 2019, 9, 3.                                                                                        | 2.2  | 42        |
| 9  | Germanium-on-Nothing for Epitaxial Liftoff of GaAs Solar Cells. Joule, 2019, 3, 1782-1793.                                                                                                  | 24.0 | 41        |
| 10 | GaAs Solar Cells Grown by Hydride Vapor-Phase Epitaxy and the Development of GaInP Cladding Layers.<br>IEEE Journal of Photovoltaics, 2016, 6, 191-195.                                     | 2.5  | 37        |
| 11 | Upright and Inverted Single-Junction GaAs Solar Cells Grown by Hydride Vapor Phase Epitaxy. IEEE<br>Journal of Photovoltaics, 2017, 7, 157-161.                                             | 2.5  | 36        |
| 12 | Multijunction Ga <sub>0.5</sub> In <sub>0.5</sub> P/GaAs solar cells grown by dynamic hydride vapor phase epitaxy. Progress in Photovoltaics: Research and Applications, 2018, 26, 887-893. | 8.1  | 33        |
| 13 | Computational fluid dynamics-aided analysis of a hydride vapor phase epitaxy reactor. Journal of<br>Crystal Growth, 2016, 434, 138-147.                                                     | 1.5  | 26        |
| 14 | Controlled formation of GaAs pn junctions during hydride vapor phase epitaxy of GaAs. Journal of<br>Crystal Growth, 2012, 352, 253-257.                                                     | 1.5  | 24        |
| 15 | Development of GaInP Solar Cells Grown by Hydride Vapor Phase Epitaxy. IEEE Journal of<br>Photovoltaics, 2017, 7, 1153-1158.                                                                | 2.5  | 23        |
| 16 | High growth rate hydride vapor phase epitaxy at low temperature through use of uncracked hydrides.<br>Applied Physics Letters, 2018, 112, .                                                 | 3.3  | 22        |
| 17 | Six-junction concentrator solar cells. AIP Conference Proceedings, 2018, , .                                                                                                                | 0.4  | 21        |
| 18 | Metalorganic vapor phase growth of quantum well structures on thick metamorphic buffer layers grown by hydride vapor phase epitaxy. Journal of Crystal Growth, 2013, 370, 293-298.          | 1.5  | 19        |

KEVIN L SCHULTE

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Highly Transparent Compositionally Graded Buffers for New Metamorphic Multijunction Solar Cell<br>Designs. IEEE Journal of Photovoltaics, 2017, 7, 347-353.                                               | 2.5 | 19        |
| 20 | Growth of AlGaAs, AlInP, and AlGaInP by Hydride Vapor Phase Epitaxy. ACS Applied Energy Materials, 2019, 2, 8405-8410.                                                                                    | 5.1 | 19        |
| 21 | Toward Low-Cost 4-Terminal GaAs//Si Tandem Solar Cells. ACS Applied Energy Materials, 2019, 2, 2375-2380.                                                                                                 | 5.1 | 17        |
| 22 | Pathway to 50% efficient inverted metamorphic concentrator solar cells. AIP Conference<br>Proceedings, 2017, , .                                                                                          | 0.4 | 15        |
| 23 | Internal Resistive Barriers Related to Zinc Diffusion During the Growth of Inverted Metamorphic<br>Multijunction Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 167-173.                            | 2.5 | 14        |
| 24 | GaAs growth rates of 528 <b>μ</b> m/h using dynamic-hydride vapor phase epitaxy with a nitrogen<br>carrier gas. Applied Physics Letters, 2020, 116, .                                                     | 3.3 | 14        |
| 25 | Increased fracture depth range in controlled spalling of (100)-oriented germanium via electroplating.<br>Thin Solid Films, 2018, 649, 154-159.                                                            | 1.8 | 13        |
| 26 | Tunnel Junction Development Using Hydride Vapor Phase Epitaxy. IEEE Journal of Photovoltaics, 2018, 8,<br>322-326.                                                                                        | 2.5 | 13        |
| 27 | Tunable Bandgap GalnAsP Solar Cells With 18.7% Photoconversion Efficiency Synthesized by Low-Cost<br>and High-Growth Rate Hydride Vapor Phase Epitaxy. IEEE Journal of Photovoltaics, 2018, 8, 1577-1583. | 2.5 | 13        |
| 28 | III–V Solar Cells Grown on Unpolished and Reusable Spalled Ge Substrates. IEEE Journal of<br>Photovoltaics, 2018, 8, 1384-1389.                                                                           | 2.5 | 11        |
| 29 | Reduced dislocation density in GaxIn1â^'xP compositionally graded buffer layers through engineered glide plane switch. Journal of Crystal Growth, 2017, 464, 20-27.                                       | 1.5 | 10        |
| 30 | Inverted metamorphic AlGaInAs/GaInAs tandem thermophotovoltaic cell designed for thermal energy<br>grid storage application. Journal of Applied Physics, 2020, 128, .                                     | 2.5 | 10        |
| 31 | Near-field transport imaging applied to photovoltaic materials. Solar Energy, 2017, 153, 134-141.                                                                                                         | 6.1 | 9         |
| 32 | Heteroepitaxy of GaAs on (001) ⇒ 6° Ge substrates at high growth rates by hydride vapor phase epitaxy.<br>Journal of Applied Physics, 2013, 113, 174903.                                                  | 2.5 | 8         |
| 33 | A model for arsenic anti-site incorporation in GaAs grown by hydride vapor phase epitaxy. Journal of<br>Applied Physics, 2014, 116, .                                                                     | 2.5 | 8         |
| 34 | Improvement of Short-Circuit Current Density in GaInP Solar Cells Grown by Dynamic Hydride Vapor<br>Phase Epitaxy. IEEE Journal of Photovoltaics, 2018, 8, 1616-1620.                                     | 2.5 | 8         |
| 35 | Lowâ€strain, quantumâ€cascadeâ€laser active regions grown on metamorphic buffer layers for emission in<br>the 3.0–4.0 l¼m wavelength region. IET Optoelectronics, 2014, 8, 25-32.                         | 3.3 | 7         |
| 36 | Uniformity of GaAs solar cells grown in a kinetically-limited regime by dynamic hydride vapor phase epitaxy. Solar Energy Materials and Solar Cells, 2019, 197, 84-92.                                    | 6.2 | 7         |

KEVIN L SCHULTE

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Guided Optimization of Phase-Unstable III–V Compositionally Graded Buffers by Cathodoluminescence<br>Spectrum Imaging. IEEE Journal of Photovoltaics, 2020, 10, 109-116.                                            | 2.5 | 7         |
| 38 | InGaAsP solar cells grown by hydride vapor phase epitaxy. , 2016, , .                                                                                                                                               |     | 6         |
| 39 | Evolution of epilayer tilt in thick In Ga1â^'As metamorphic buffer layers grown by hydride vapor phase<br>epitaxy. Journal of Crystal Growth, 2015, 426, 283-286.                                                   | 1.5 | 5         |
| 40 | Low cost GaAs solar cells grown by hydride vapor phase epitaxy and the development of GaInP cladding layers. , 2015, , .                                                                                            |     | 4         |
| 41 | A kinetic model for GaAs growth by hydride vapor phase epitaxy. , 2016, , .                                                                                                                                         |     | 4         |
| 42 | GaAs Solar Cells Grown on Unpolished, Spalled Ge Substrates. , 2018, , .                                                                                                                                            |     | 4         |
| 43 | Strategies for Thinning Graded Buffer Regions in Metamorphic Solar Cells and Performance<br>Tradeoffs. IEEE Journal of Photovoltaics, 2018, 8, 1349-1354.                                                           | 2.5 | 4         |
| 44 | Carrier-Transport Study of Gallium Arsenide Hillock Defects. Microscopy and Microanalysis, 2019, 25, 1160-1166.                                                                                                     | 0.4 | 4         |
| 45 | Compositionally graded Ga1â^'xInxP buffers grown by static and dynamic hydride vapor phase epitaxy at rates up to 1 <i>1¼</i> m/min. Applied Physics Letters, 2021, 118, .                                          | 3.3 | 4         |
| 46 | Inverted metamorphic GaInAs solar cell grown by dynamic hydride vapor phase epitaxy. Applied Physics<br>Letters, 2021, 119, .                                                                                       | 3.3 | 4         |
| 47 | Modeling of gas curtains in a dual chamber hydride vapor phase epitaxial photovoltaic growth reactor. , 2015, , .                                                                                                   |     | 3         |
| 48 | Enhanced Incorporation of P into Tensile-Strained GaAs1-yPyLayers Grown by Metal-Organic Vapor<br>Phase Epitaxy at Very Low Temperatures. ECS Journal of Solid State Science and Technology, 2016, 5,<br>P183-P189. | 1.8 | 3         |
| 49 | Effect of hydride vapor phase epitaxy growth conditions on the degree of atomic ordering in GaInP.<br>Journal of Applied Physics, 2020, 128, .                                                                      | 2.5 | 3         |
| 50 | Control of Surface Morphology during the Growth of (110)-Oriented GaAs by Hydride Vapor Phase<br>Epitaxy. Crystal Growth and Design, 2021, 21, 3916-3921.                                                           | 3.0 | 3         |
| 51 | Dopant Diffusion Control for Improved Tandem Cells Grown by D-HVPE. IEEE Journal of Photovoltaics, 2021, 11, 1251-1255.                                                                                             | 2.5 | 3         |
| 52 | Planarization and Processing of Metamorphic Buffer Layers Grown by Hydride Vapor-Phase Epitaxy.<br>Journal of Electronic Materials, 2014, 43, 873-878.                                                              | 2.2 | 2         |
| 53 | Recent HVPE grown solar cells at NREL. , 2021, , .                                                                                                                                                                  |     | 2         |
| 54 | (110)-Oriented GaAs Devices and Spalling as a Platform for Low-Cost III-V Photovoltaics. , 2021, , .                                                                                                                |     | 2         |

KEVIN L SCHULTE

| #  | Article                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | (110)-Oriented GaAs Devices and Spalling as a Platform for Low-Cost III-V Photovoltaics. IEEE Journal of<br>Photovoltaics, 2022, 12, 962-967.           | 2.5 | 2         |
| 56 | Notice of Removal Upright and inverted single junction GaAs solar cells grown by hydride vapor phase epitaxy. , 2017, , .                               |     | 1         |
| 57 | Surface chemistry models for GaAs epitaxial growth and hydride cracking using reacting flow simulations. Journal of Applied Physics, 2021, 130, 115702. | 2.5 | 1         |
| 58 | Analysis of GaInP Solar Cells Grown by Hydride Vapor Phase Epitaxy. , 2017, , .                                                                         |     | 0         |
| 59 | Notice of Removal Highly transparent compositionally graded buffers for new metamorphic multi-junction solar cell designs. , 2017, , .                  |     | Ο         |
| 60 | GaLnAsP Solar Cells Grown by Hydride Vapor Phase Epitaxy for One-Sun & Low-Concentration III-V/Si<br>Photovoltaics. , 2017, , .                         |     | 0         |
| 61 | Fabrication of Thin III-V Solar Cells on Ni Films using Electroless Ni Deposition. , 2019, , .                                                          |     | Ο         |
| 62 | Analysis of GaAs Solar Cells Grown on 50 mm Wafers at 700 °C by Dynamic Hydride Vapor Phase<br>Epitaxy. , 2019, , .                                     |     | 0         |
| 63 | High Performance GaAs Solar Cells Grown at High Growth Rates by Atmospheric-Pressure Dynamic<br>Hydride Vapor Phase Epitaxy. , 2019, , .                |     | 0         |
| 64 | Effect of Doping Density on the Performance of Metamorphic GaInAs Solar Cells Grown by Dynamic<br>Hydride Vapor Phase Epitaxy. , 2021, , .              |     | 0         |
| 65 | GaAs Solar Cell Grown by Dynamic Hydride Vapor Phase Epitaxy Using Nitrogen Carrier Gas. , 2020, , .                                                    |     | 0         |
| 66 | Improved contacts for tandem cells with enhanced effciency grown by D-HVPE. , 2020, , .                                                                 |     | 0         |