Jacqueline Grima-Pettenati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9227319/publications.pdf

Version: 2024-02-01

29 papers 3,500 citations

304743 22 h-index 477307 29 g-index

29 all docs 29 docs citations

29 times ranked

4070 citing authors

#	Article	IF	CITATIONS
1	Eucalyptus grandis AUX/INDOLE-3-ACETIC ACID 13 (EgrIAA13) is a novel transcriptional regulator of xylogenesis. Plant Molecular Biology, 2022, , 1 .	3.9	3
2	Overexpression of EgrIAA20 from Eucalyptus grandis, a Non-Canonical Aux/IAA Gene, Specifically Decouples Lignification of the Different Cell-Types in Arabidopsis Secondary Xylem. International Journal of Molecular Sciences, 2022, 23, 5068.	4.1	2
3	Implementing the CRISPR/Cas9 Technology in Eucalyptus Hairy Roots Using Wood-Related Genes. International Journal of Molecular Sciences, 2020, 21, 3408.	4.1	30
4	Wood Architecture and Composition Are Deeply Remodeled in Frost Sensitive Eucalyptus Overexpressing CBF/DREB1 Transcription Factors. International Journal of Molecular Sciences, 2020, 21, 3019.	4.1	7
5	A systems biology view of wood formation in <i>Eucalyptus grandis</i> trees submitted to different potassium and water regimes. New Phytologist, 2019, 223, 766-782.	7.3	48
6	A Standardized Synthetic <i>Eucalyptus</i> Transcription Factor and Promoter Panel for Re-engineering Secondary Cell Wall Regulation in Biomass and Bioenergy Crops. ACS Synthetic Biology, 2019, 8, 463-465.	3.8	15
7	Long cold exposure induces transcriptional and biochemical remodelling of xylem secondary cell wall in Eucalyptus. Tree Physiology, 2018, 38, 409-422.	3.1	27
8	The <i>Eucalyptus</i> linker histone variant EgH1.3 cooperates with the transcription factor EgMYB1 to control lignin biosynthesis during wood formation. New Phytologist, 2017, 213, 287-299.	7.3	46
9	<i>Eucalyptus</i> hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation. Plant Biotechnology Journal, 2016, 14, 1381-1393.	8.3	54
10	Genomeâ€wide analysis of the lignin toolbox of <i><scp>E</scp>ucalyptus grandis</i> . New Phytologist, 2015, 206, 1297-1313.	7.3	113
11	Comprehensive Genome-Wide Analysis of the Aux/IAA Gene Family in Eucalyptus: Evidence for the Role of EgrIAA4 in Wood Formation. Plant and Cell Physiology, 2015, 56, 700-714.	3.1	37
12	Structural, evolutionary and functional analysis of the <scp>NAC</scp> domain protein family in <i>Eucalyptus</i> . New Phytologist, 2015, 206, 1337-1350.	7.3	69
13	The <i><scp>E</scp>ucalyptus grandis </i> <scp>R</scp> 2 <scp>R</scp> 3â€ <scp>MYB</scp> transcription factor family: evidence for woody growthâ€related evolution and function. New Phytologist, 2015, 206, 1364-1377.	7.3	107
14	Genome-Wide Characterization and Expression Profiling of the AUXIN RESPONSE FACTOR (ARF) Gene Family in Eucalyptus grandis. PLoS ONE, 2014, 9, e108906.	2. 5	45
15	Contrasting nitrogen fertilization treatments impact xylem gene expression and secondary cell wall lignification in Eucalyptus. BMC Plant Biology, 2014, 14, 256.	3.6	41
16	Genetic transformation of Eucalyptus globulus using the vascular-specific EgCCR as an alternative to the constitutive CaMV35S promoter. Plant Cell, Tissue and Organ Culture, 2014, 117, 77-84.	2.3	20
17	The genome of Eucalyptus grandis. Nature, 2014, 510, 356-362.	27.8	725
18	Identification of novel transcription factors regulating secondary cell wall formation in Arabidopsis. Frontiers in Plant Science, 2013, 4, 189.	3.6	106

#	Article	IF	CITATIONS
19	Reference Genes for High-Throughput Quantitative Reverse Transcription–PCR Analysis of Gene Expression in Organs and Tissues of Eucalyptus Grown in Various Environmental Conditions. Plant and Cell Physiology, 2012, 53, 2101-2116.	3.1	54
20	Building up resources and knowledge to unravel transcriptomics dynamics underlying Eucalyptus globulusxylogenesis. BMC Proceedings, $2011, 5, \ldots$	1.6	2
21	<i>EgMYB1</i> , an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation in <i>Arabidopsis</i> and poplar. New Phytologist, 2010, 188, 774-786.	7.3	180
22	Overexpression of <i>> Eg</i> >ROP1, a <i>Eucalyptus</i> > vascularâ€expressed Racâ€like small GTPase, affects secondary xylem formation in <i>Arabidopsis thaliana</i> . New Phytologist, 2009, 183, 1014-1029.	7.3	21
23	Downregulation of Cinnamoyl-Coenzyme A Reductase in Poplar: Multiple-Level Phenotyping Reveals Effects on Cell Wall Polymer Metabolism and Structure. Plant Cell, 2007, 19, 3669-3691.	6.6	352
24	Molecular characterization of EgMYB1, a putative transcriptional repressor of the lignin biosynthetic pathway. Plant Science, 2007, 173, 542-549.	3.6	123
25	EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant Journal, 2005, 43, 553-567.	5.7	327
26	Identification of genes preferentially expressed during wood formation in Eucalyptus. Plant Molecular Biology, 2004, 55, 263-280.	3.9	99
27	Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends in Plant Science, 2003, 8, 576-581.	8.8	294
28	Down-regulation of Cinnamoyl-CoA Reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant Journal, 2002, 13, 71-83.	5.7	282
29	Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant Journal, 1997, 11, 429-441.	5.7	271