Mahmood Rezaee Roknabadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9226829/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of external strain on electronic structure of stanene. Computational Materials Science, 2015, 101, 164-167.	3.0	86
2	Study of structural and magnetic properties of superparamagnetic Fe3O4/SiO2 core–shell nanocomposites synthesized with hydrophilic citrate-modified Fe3O4 seeds via a sol–gel approach. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 53, 207-216.	2.7	59
3	Energy transfer in strained graphene assisted by discrete breathers excited by external ac driving. Physical Review B, 2017, 95, .	3.2	50
4	Electrically Engineered Band Gap in Two-Dimensional Ge, Sn, and Pb: A First-Principles and Tight-Binding Approach. Journal of Physical Chemistry C, 2015, 119, 11896-11902.	3.1	41
5	Electronic and thermal properties of germanene and stanene by first-principles calculations. Superlattices and Microstructures, 2016, 91, 383-390.	3.1	41
6	A novel technique for increasing electron mobility of indium-tin-oxide transparent conducting films. Thin Solid Films, 2002, 413, 167-170.	1.8	36
7	Transport properties of an armchair boron-nitride nanoribbon embedded between two graphene electrodes. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1751-1754.	2.7	36
8	Computational study of edge configuration and the diameter effects on the electrical transport of graphdiyne nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 84, 146-151.	2.7	27
9	Semi-transparent Schottky junction solar cell based on evaporated CdSe thin films: Influence of post-deposition air-annealing. Optik, 2020, 204, 164204.	2.9	26
10	Effect of Ag-doping on the structural, optical, electrical and photovoltaic properties of thermally evaporated Cadmium Selenide thin films. Materials Research Express, 2019, 6, 126453.	1.6	22
11	The role of electron–phonon interaction on the transport properties of graphene based nano-devices. Physica B: Condensed Matter, 2014, 446, 85-91.	2.7	19
12	First principles study of small cobalt clusters encapsulated in C60 and C82 spherical nanocages. Applied Surface Science, 2011, 257, 7586-7591.	6.1	17
13	Silicene nanoribbon as a new DNA sequencing device. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 595-600.	2.1	17
14	Hydrogen adsorption on the α-graphyne using ab initio calculations. Superlattices and Microstructures, 2014, 75, 340-346.	3.1	16
15	Possible polaron formation of zigzag graphene nano-ribbon in the presence of Rashba spin–orbit coupling. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 66, 303-308.	2.7	16
16	Co-electrospinning fabrication and study of structural and electromagnetic interference-shielding effectiveness of TiO2/SiO2 core–shell nanofibers. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	16
17	Spin polarization tuning in the graphene quantum dot by using in-plane external electric field. Journal of Magnetism and Magnetic Materials, 2014, 350, 6-11.	2.3	15
18	Effect of Temperature on Young's Modulus of Graphene. Journal of Thermal Stresses, 2012, 35, 913-920.	2.0	14

#	Article	IF	CITATIONS
19	Electronic and optical properties of pure and doped boron-nitride nanotube. Physica B: Condensed Matter, 2013, 410, 212-216.	2.7	14
20	First-principles study of the superconductivity in MgB2 bulk and in its bilayer thin film based on electron–phonon coupling. Physica C: Superconductivity and Its Applications, 2015, 509, 1-4.	1.2	14
21	Electrical Investigation of Armchair Graphene-Graphdiyne-Graphene Nanoribbons Heterojunctions. Communications in Theoretical Physics, 2016, 65, 99-104.	2.5	14
22	Amorphous calcium phosphate nanoparticles-based mouthwash: preparation, characterization, and anti-bacterial effects. Green Chemistry Letters and Reviews, 2019, 12, 278-285.	4.7	14
23	First principles calculations of C70 fullerene nano-cage doped with transition metal atoms (Fe, Co). Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1351-1359.	2.7	13
24	Electronic properties of α-graphyne nanoribbons under the electric field effect. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 67, 54-58.	2.7	13
25	Spin-dependent transport properties of an armchair boron-phosphide nanoribbon embedded between two graphene nanoribbon electrodes. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 65, 61-67.	2.7	13
26	DFT-NEGF simulation of graphene-graphdiyne-graphene resonant tunneling transistor. Computational Materials Science, 2018, 144, 280-284.	3.0	13
27	Evaluation of electronic and transport properties of a nano-scale device in the presence of electric field. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 43, 402-404.	2.7	12
28	Spin dependent transport through triangular graphene quantum dot in the presence of Rashba type spin–orbit coupling. Journal of Magnetism and Magnetic Materials, 2014, 367, 81-85.	2.3	12
29	Electronic and phononic modulation of MoS2 under biaxial strain. Physica B: Condensed Matter, 2017, 526, 96-101.	2.7	12
30	Ab-initio investigation of spin-dependent transport properties in Fe-doped armchair graphyne nanoribbons. Journal of Magnetism and Magnetic Materials, 2016, 420, 56-61.	2.3	11
31	Interaction of longitudinal phonons with discrete breather in strained graphene. European Physical Journal B, 2018, 91, 1.	1.5	11
32	The effects of MoO3/TPD multiple quantum well structures on the performance of organic light emitting diodes (OLEDs). Journal of Materials Science: Materials in Electronics, 2019, 30, 3952-3958.	2.2	11
33	Influence of Co substitution on magnetic properties and thermal expansion of Nd6Fe13Si intermetallic compound. Intermetallics, 2011, 19, 682-687.	3.9	9
34	Exploring the sensitivity of ZnO nanotubes to tyrosine nitration: A DFT approach. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 2090-2097.	2.1	9
35	First principle study of inducing superconductivity in α-graphyne by hole-doping and biaxial tensile strain. Computational Materials Science, 2016, 124, 183-189.	3.0	9
36	Extraordinary optical transmission of periodic array of subwavelength holes within titanium nitride thin film. Journal of Nanophotonics, 2017, 11, 036006.	1.0	9

#	Article	IF	CITATIONS
37	Low temperature facile synthesis of pseudowollastonite nanoparticles by the surfactant-assisted sol-gel method. Materials Chemistry and Physics, 2020, 243, 122629.	4.0	9
38	Effect of electron–electron interaction on the transport through a nano-wire. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1214-1217.	2.7	8
39	Rectifying behavior of graphene/h-boron-nitride heterostructure. Physica B: Condensed Matter, 2013, 415, 62-66.	2.7	8
40	Topological phase in oxidized zigzag stanene nanoribbons. AIP Advances, 2016, 6, 095019.	1.3	8
41	Magnetotransport properties of corrugated stanene in the presence of electric modulation and tilted magnetic field. Physica Status Solidi (B): Basic Research, 2016, 253, 300-307.	1.5	8
42	Adsorption characteristics of amino acids on graphene and germanene using dispersion-corrected density functional theory. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 127, 114498.	2.7	8
43	A study of inelastic electron–phonon interactions on tunneling magnetoresistance of a nano-scale device. Physica B: Condensed Matter, 2011, 406, 478-481.	2.7	7
44	Magnetoelastic properties of ErMn6Sn6 intermetallic compound. Journal of Magnetism and Magnetic Materials, 2012, 324, 723-728.	2.3	7
45	Estimation of the Young's modulus of single-walled carbon nanotubes under electric field using tight-binding method. Superlattices and Microstructures, 2013, 59, 178-186.	3.1	7
46	Site specific interaction of aromatic amino acids with ZnO nanotubes: A density functional approach. Computational and Theoretical Chemistry, 2016, 1086, 36-44.	2.5	7
47	Density functional investigations on the adsorption characteristics of nucleobases on germanene nanoribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 117, 113772.	2.7	7
48	Synthesis and controlled drug release behavior of micro-mesoporous wollastonite nanoparticles. Effect of calcination temperature on the structural and biodegradability properties. Materials Chemistry and Physics, 2022, 280, 125825.	4.0	7
49	Magnetoelastic properties of GdMn6Sn6 intermetallic compound. Journal of Magnetism and Magnetic Materials, 2011, 323, 2070-2075.	2.3	6
50	Interaction of nucleobases with silicene nanoribbon: A density functional approach. Computational and Theoretical Chemistry, 2017, 1103, 32-37.	2.5	6
51	Spin-dependent structural, electronic and transport properties of armchair graphyne nanoribbons doped with single transition-metal atom, using DFT calculations. Journal of Magnetism and Magnetic Materials, 2017, 443, 96-103.	2.3	6
52	Semimetal behavior of bilayer stanene. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 89, 155-159.	2.7	4
53	Optical Properties of Au-Doped Titanium Nitride Nanostructures: a Connection Between Density Functional Theory and Finite-Difference Time-Domain Method. Plasmonics, 2019, 14, 1871-1879.	3.4	4
54	Investigation of Charge Trapping Induced by DCM–TPA Dopant in Organic Light Emitting Devices Composed of (NPB:Alq3):DCM–TPA Mixed Host-Doped Emitting Layer. Transactions on Electrical and Electronic Materials. 2019. 20. 240-251.	1.9	4

#	Article	IF	CITATIONS
55	Effects of phonon scattering on the electron transport and photocurrent of graphene quantum dot structures. European Physical Journal B, 2019, 92, 1.	1.5	4
56	Spin transport properties of Fe, Co and Ni doped hydrogenated zigzag silicene nanoribbons: Negative differential resistance and spin filtering effect. Superlattices and Microstructures, 2019, 125, 95-102.	3.1	4
57	Magnetovolume effects in substituted Er1â^'xGdxMn6Sn6 intermetallics. Intermetallics, 2012, 22, 116-121.	3.9	3
58	The effect of impurity on a spin-filter device based on graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 54, 93-97.	2.7	3
59	Magnetoelastic properties of substituted Er1â^'xGdxMn6Sn6 intermetallic system. Journal of Magnetism and Magnetic Materials, 2014, 361, 126-131.	2.3	3
60	High piezoelectricity in the buckled V-structure monolayers of group III-V: An Ab initio calculation. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 102, 88-94.	2.7	3
61	Electron transport simulation in bulk wurtzite ZnO and its n+–n–n+ diode, compared with GaN. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 47, 252-256.	2.7	2
62	Study of the electron–photon interaction on the spin-dependent transport in nano-structures. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 57, 76-82.	2.7	2
63	Synthesis, UV-shielding and electromagnetic wave absorbing properties of polyvinylpyrrolidone- \$\$hbox {TiO}_{2}\$\$ TiO 2 /polyacrylonitrile- \$\$hbox {SiO}_{2}\$\$. Bulletin of Materials Science, 2019, 42, 1.	1.7	2
64	Modelling of energy transfer induced by longitudinal shaking of one atom row in carbon nanoribbons. Letters on Materials, 2016, 6, 152-155.	0.7	2
65	Investigating magneto-resistance in transition metals doped silicene nanoribbons. Superlattices and Microstructures, 2022, 164, 107144.	3.1	2
66	Magnetoelastic properties of Nd6Fe13Cu intermetallic compound. Physica B: Condensed Matter, 2011, 406, 3359-3362.	2.7	1
67	Study of Transport Properties in Armchair Graphyne Nanoribbons: A Density Functional Approach. Communications in Theoretical Physics, 2016, 66, 143-148.	2.5	1
68	Study of electronic and optical properties of two-layered hydrogenated aluminum nitrate nanosheet. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 93, 234-237.	2.7	1
69	Spectrally Tunable Optical Transmission of Titanium Nitride Split Ring Resonators. Plasmonics, 2018, 13, 1569-1576.	3.4	1
70	Comment on: "Kramers–Kronig calculations for linear and nonlinear optics of nanostructured methyl violet (CI-42535): New trend in laser power attenuation using dyes―[Physica B 552 (2019) 62–70]. Physica B: Condensed Matter, 2020, 589, 412186.	2.7	1
71	Nanoscale Trilayer Ni/Cu/Fe Investigation for MI Sensor Application. Transactions of the Indian Institute of Metals, 2019, 72, 1175-1179.	1.5	0
72	Theoretical study of the effects of electron-phonon and electron-photon interaction in optoelectronic properties of armchair graphene nano-flakes –a renormalization method. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 118, 113867.	2.7	0

#	Article	IF	CITATIONS
73	Comment on: "Growth, optical, photoluminescence, dielectric, second and third order nonlinear optical studies of benzoyl valine acentric crystal―[(2017) Mol. Cryst. Liq. Cryst., 658, 186–197]. Molecular Crystals and Liquid Crystals, 2020, 703, 67-68.	0.9	0
74	Comment on:"Optical analysis of nanostructured rose bengal thin films using Kramers–Kronig approach: New trend in laser power attenuation―[Opt. Laser. Technol. 112 (2019) 207–214]. Optics and Laser Technology, 2020, 131, 106448.	4.6	0
75	Fabrication and study of UV-shielding and photocatalytic performance of uniform TiO2/SiO2 core-shell nanofibers via single-nozzle co-electrospinning and interface sol–gel reaction. Scientia Iranica, 2016, 23, 3135-3144.	0.4	0