Ana San-Felix

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9226726/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organotropic dendrons with high potency as HIV-1, HIV-2 and EV-A71 cell entry inhibitors. European Journal of Medicinal Chemistry, 2022, 237, 114414.	2.6	1
2	Multivalent Tryptophan―and Tyrosineâ€Containing [60]Fullerene Hexaâ€Adducts as Dual HIV and Enterovirus A71 Entry Inhibitors. Chemistry - A European Journal, 2021, 27, 10700-10710.	1.7	9
3	Double Arylation of the Indole Side Chain of Tri- and Tetrapodal Tryptophan Derivatives Renders Highly Potent HIV-1 and EV-A71 Entry Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 10027-10046.	2.9	7
4	Scaffold Simplification Strategy Leads to a Novel Generation of Dual Human Immunodeficiency Virus and Enterovirus-A71 Entry Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 349-368.	2.9	20
5	Tryptophan Trimers and Tetramers Inhibit Dengue and Zika Virus Replication by Interfering with Viral Attachment Processes. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	8
6	Modifications in the branched arms of a class of dual inhibitors of HIV and EV71 replication expand their antiviral spectrum. Antiviral Research, 2019, 168, 210-214.	1.9	9
7	Viral engagement with host receptors blocked by a novel class of tryptophan dendrimers that targets the 5-fold-axis of the enterovirus-A71 capsid. PLoS Pathogens, 2019, 15, e1007760.	2.1	26
8	Galloyl Carbohydrates with Antiangiogenic Activity Mediated by Capillary Morphogenesis Gene 2 (CMG2) Protein Binding. Journal of Medicinal Chemistry, 2019, 62, 3958-3970.	2.9	10
9	A Novel Class of Cationic and Non-Peptidic Small Molecules as Hits for the Development of Antimicrobial Agents. Molecules, 2018, 23, 1513.	1.7	10
10	Novel Polyphenols That Inhibit Colon Cancer Cell Growth Affecting Cancer Cell Metabolism. Journal of Pharmacology and Experimental Therapeutics, 2018, 366, 377-389.	1.3	13
11	Structure-activity relationship studies on a Trp dendrimer with dual activities against HIV and enterovirus A71. Modifications on the amino acid. Antiviral Research, 2017, 139, 32-40.	1.9	17
12	Optimization of a Class of Tryptophan Dendrimers That Inhibit HIV Replication Leads to a Selective, Specific, and Low-Nanomolar Inhibitor of Clinical Isolates of Enterovirus A71. Antimicrobial Agents and Chemotherapy, 2016, 60, 5064-5067.	1.4	18
13	Anti-HIV-1 activity of a tripodal receptor that recognizes mannose oligomers. European Journal of Medicinal Chemistry, 2015, 106, 132-143.	2.6	10
14	Linear and branched alkyl-esters and amides of gallic acid and other (mono-, di- and tri-) hydroxy benzoyl derivatives as promising anti-HCV inhibitors. European Journal of Medicinal Chemistry, 2015, 92, 656-671.	2.6	36
15	Tryptophan dendrimers that inhibit HIV replication, prevent virus entry and bind to the HIV envelope glycoproteins gp120 and gp41. European Journal of Medicinal Chemistry, 2015, 106, 34-43.	2.6	29
16	Multivalent agents containing 1-substituted 2,3,4-trihydroxyphenyl moieties as novel synthetic polyphenols directed against HIV-1. Organic and Biomolecular Chemistry, 2014, 12, 5278-5294.	1.5	13
17	Differential Recognition of Mannoseâ€Based Polysaccharides by Tripodal Receptors Based on a Triethylbenzene Scaffold Substituted with Trihydroxybenzoyl Moieties. European Journal of Organic Chemistry, 2013, 2013, 65-76.	1.2	11
18	Targeting HIV Entry through Interaction with Envelope Glycoprotein 120 (gp120): Synthesis and Antiviral Evaluation of 1,3,5-Triazines with Aromatic Amino Acids. Journal of Medicinal Chemistry, 2011, 54, 5335-5348.	2.9	33

#	Article	IF	CITATIONS
19	Selective inhibition of Human Immunodeficiency Virus type 1 (HIV-1) by a novel family of tricyclic nucleosides. Antiviral Research, 2011, 92, 37-44.	1.9	3
20	One-Pot Synthesis of Polycyclic Nucleosides with Unusual Molecular Skeletons. Journal of Organic Chemistry, 2009, 74, 9071-9081.	1.7	4
21	Novel N-3 Substituted TSAO-T Derivatives: Synthesis and Anti-HIV-Evaluation. Nucleosides, Nucleotides and Nucleic Acids, 2008, 27, 351-367.	0.4	7
22	Synthesis of Highly Condensed Polycyclic Carbohydrates by Reaction of a Spirocyclic Enamino Sulfonate Derived from d-Xylofuranose with Bifunctional Reagents. Journal of Organic Chemistry, 2007, 72, 9713-9721.	1.7	2
23	Structureâ~'Activity Relationships of [2â€~,5â€~-Bis-O-(tert-butyldimethylsilyl)-β-d-ribofuranosyl]- 3â€~-spiro-5â€~ â€~-(4‰ â€~-amino-1â€~〉â€~,2â€~〉â€~-oxathiole-2â€~〉â€~,2â€~〉â€~-dio: Transcriptase Dimerization. Journal of Medicinal Chemistry, 2006, 49, 4834-4841.	xide)thym	iinæDerivative
24	A Cyclic Enamine Derived from 1,2-O-Isopropylidene-α-d-xylofuranose As a Novel Carbohydrate Intermediate To Achieve Skeletal Diversity. Journal of Organic Chemistry, 2006, 71, 7224-7235.	1.7	11
25	Design and Discovery of a Novel Dipeptidyl-peptidase IV (CD26)-Based Prodrug Approach. Journal of Medicinal Chemistry, 2006, 49, 5339-5351.	2.9	26
26	Unprecedented Lability of the 5â€~-O-tert-Butyldimethylsilyl Group from 3â€~-Spiro-5â€~Ââ€~-(4â€~Ââ€~-acylamino-1†Ââ€~,2â€~Ââ€~-oxathiole-2â€~Ââ€~,2â€~Ââ€~-dioxide) Nucleoside De Participation of the 4â€~Ââ€~-Acylamino Residue. Journal of Organic Chemistry, 2006, 71, 1407-1415.	erivatives	via7Neighbori
27	Dimerization inhibitors of HIV-1 reverse transcriptase, protease and integrase: A single mode of inhibition for the three HIV enzymes?. Antiviral Research, 2006, 71, 260-267.	1.9	58
28	TSAO Derivatives, Inhibitors of HIV-1 Reverse Transcriptase Dimerization: Recent Progress. Current Pharmaceutical Design, 2006, 12, 1895-1907.	0.9	26
29	Monitor – chemistry. Drug Discovery Today, 2005, 10, 446-446.	3.2	0
30	The Role of Thr139 in the Human Immunodeficiency Virus Type 1 Reverse Transcriptase Sensitivity to (+)-Calanolide A. Molecular Pharmacology, 2005, 68, 652-659.	1.0	15
31	TSAO Derivatives the First Non-Peptide Inhibitors of HIV-1 RT Dimerization. Antiviral Chemistry and Chemotherapy, 2005, 16, 147-153.	0.3	10
32	Improving the Antiviral Efficacy and Selectivity of HIV-1 Reverse Transcriptase Inhibitor TSAO-T by the Introduction of Functional Groups at the N-3 Position. Journal of Medicinal Chemistry, 2005, 48, 6653-6660.	2.9	26
33	Novel [2â€~,5â€~-Bis-O-(tert-butyldimethylsilyl)-β-d-ribofuranosyl]- 3â€~-spiro-5â€~Ââ€~-(4â€~Ââ€~-amino-1â€~Ââ€~,2â€~Ââ€~-oxathiole-2â€~Ââ€~,2â€~Ââ€~-dioxide) Derivatives with A Anti-Human-Cytomegalovirus Activity. Journal of Medicinal Chemistry, 2005, 48, 1158-1168.	.nt ⊵l∳ IV-1	an d 8
34	TSAO Compounds: The Comprehensive Story of a Unique Family of HIV- 1 Specific Inhibitors of Reverse Transcriptase. Current Topics in Medicinal Chemistry, 2004, 4, 945-963.	1.0	49
35	Synthesis of Novel Bi-, Tri-, and Tetracyclic Nucleosides by Reaction of a Common Cyclic Enamine Derived from TSAO-T with Nucleophiles. Journal of Organic Chemistry, 2004, 69, 8758-8766.	1.7	11
36	Improving the selectivity of acyclic nucleoside analogues as inhibitors of human mitochondrial thymidine kinase: replacement of a triphenylmethoxy moiety with substituted amines and carboxamides. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3027-3030.	1.0	14

#	Article	IF	CITATIONS
37	Synthesis and Structural Characterization of Pyrimidine Bi- and Tricyclic Nucleosides with Sugar Puckers Conformationally Locked into the Eastern Region of the Pseudorotational Cycleâ€. Journal of Organic Chemistry, 2003, 68, 6695-6704.	1.7	15
38	Structure-Activity Relationship Studies on a Novel Family of Specific HIV-1 Reverse Transcriptase Inhibitors. Antiviral Chemistry and Chemotherapy, 2003, 14, 249-262.	0.3	3
39	N-3 Substituted TSAO Derivatives as a Probe to Explore the Dimeric Interface of HIV-1 Reverse Transcriptase. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 947-949.	0.4	5
40	Identification of a Putative Binding Site for [2â€~,5â€~-Bis-O-(tert-butyldimethylsilyl)-β-d-ribofuranosyl]-3â€~-spiro-5â€~ â€~-(4â€~ â€~-amino-1â€~â€ (TSAO) Derivatives at the p51â~'p66 Interface of HIV-1 Reverse Transcriptase. Journal of Medicinal Chemistry, 2001, 44, 1853-1865.	‱â€~,2â€ 2.9	€~ â€~-oxa 67
41	Identification of a novel family of nucleosides that specifically inhibit HIV-1 reverse transcriptase. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 3085-3088.	1.0	4
42	Site-Directed Mutagenesis of Human Immunodeficiency Virus Type 1 Reverse Transcriptase at Amino Acid Position 138. Virology, 2001, 280, 97-106.	1.1	22
43	Exploring the role of the 5′-position of TSAO-T. Synthesis and anti-HIV evaluation of novel TSAO-T derivatives. Antiviral Research, 2001, 50, 207-222.	1.9	21
44	Exploitation of the Low Fidelity of Human Immunodeficiency Virus Type 1 (HIV-1) Reverse Transcriptase and the Nucleotide Composition Bias in the HIV-1 Genome To Alter the Drug Resistance Development of HIV. Journal of Virology, 2001, 75, 5772-5777.	1.5	27
45	4″-H-TSAO-T, A NOVEL PROTOTYPE IN THE HIV-1 SPECIFIC TSAO FAMILY. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 711-714.	0.4	6
46	"SECOND GENERATION―OF TSAO COMPOUNDS DIRECTED AGAINST HIV-1 TSAO-RESISTANT STRAINS. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 707-710.	0.4	4
47	Synthesis of Novel 5″-Substituted Tsao-T Analogues with Anti-Hiv-1 Activity. Journal of Carbohydrate Chemistry, 2000, 19, 635-640.	0.4	5
48	TSAO-T Analogues Bearing Amino Acids at Position N-3 of Thymine: Synthesis and Anti-Human Immunodeficiency Virus Activity. Antiviral Chemistry and Chemotherapy, 2000, 11, 61-69.	0.3	8
49	Hiv-1 Specific Reverse Transcriptase Inhibitors: why are Tsao-Nucleosides so Unique?. Journal of Carbohydrate Chemistry, 2000, 19, 451-469.	0.4	34
50	Novel TSAO Derivatives Modified at Positions 3′ and 4′ Of the Spiro Moiety. Nucleosides & Nucleotides, 1999, 18, 675-676.	0.5	6
51	Unexpected Results in the Reaction of 5′-Tosyl TSAO-m ³ T With Amines. Nucleosides & Nucleotides, 1999, 18, 715-716.	0.5	1
52	Novel Series of [ddN]-[TSAO-T] Heterodimers as Potential Bi-Functional Inhibitors of HIV-1 RT. Studies in the Linker and ddN Region. Nucleosides & Nucleotides, 1999, 18, 1029-1030.	0.5	4
53	Steric and Electronic Properties of the 3′-spiro Moiety of TSAO-T and Analogues. Nucleosides & Nucleotides, 1999, 18, 1107-1108.	0.5	0
54	Abasic Analogues of TSAO-T as the First Sugar Derivatives That Specifically Inhibit HIV-1 Reverse Transcriptase. Journal of Medicinal Chemistry, 1998, 41, 4636-4647.	2.9	24

#	Article	IF	CITATIONS
55	Novel Tsao Derivatives. Synthesis and Anti-HIV-1 Activity of Allofuranosyl-TSAO-T Analogues. Nucleosides & Nucleotides, 1996, 15, 349-359.	0.5	4
56	Suppression of the breakthrough of human immunodeficiency virus type 1 (HIV-1) in cell culture by thiocarboxanilide derivatives when used individually or in combination with other HIV-1-specific inhibitors (i.e., TSAO derivatives) Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 5470-5474.	3.3	41
57	Synthesis and Anti-HIV-1 Activity of 4- and 5-Substituted 1,2,3-Triazole-TSAO Derivatives. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 595-598.	0.4	25
58	Synthesis of [1-[2',5'-bis-O-(t-Butyldimethylsilyl)-β- L-ribofuranosyl] thymine]-3'-spiro-5''-(4''-amino-1'',2''-oxathiole-2'',2''-dioxide) (L-TSAO-T). Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 299-301.	0.4	3
59	TSAO Derivatives: Highly Specific Inhibitors of Human Immunodeficiency Virus Type-1 (HIV-1) Replication. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 585-594.	0.4	18
60	Synthesis and Anti-HIV Activity of [AZT]-[TSAO-T] and [AZT]-[HEPT] Dimers as Potential Multifunctional Inhibitors of HIV-1 Reverse Transcriptase. Journal of Medicinal Chemistry, 1995, 38, 1641-1649.	2.9	45
61	Novel Series of TSAO-T Derivatives. Synthesis and Anti-HIV-1 Activity of 4-, 5-, and 6-Substituted Pyrimidine Analogs. Journal of Medicinal Chemistry, 1994, 37, 453-460.	2.9	41
62	1,2,3-Triazole-[2,5-Bis-O-(tert-butyldimethylsilyl)betaD-ribofuranosyl]-3'-spiro-5''-(4''-amino-1'',2''-oxathiole) Tj 37, 4185-4194.	ETQq0 0 2.9	0 rgBT /Overlo 721
63	Metabolism and pharmacokinetics of the anti-HIV-1-specific inhibitor		

#	Article	IF	CITATIONS
73	Chemical, biochemical and genetic endeavours characterizing the interaction of sparsomycin with the ribosome. Biochimie, 1991, 73, 1137-1143.	1.3	10
74	Interaction of the antibiotic sparsomycin with the ribosome. Antimicrobial Agents and Chemotherapy, 1991, 35, 10-13.	1.4	13
75	Biochemical and kinetic characteristics of the interaction of the antitumor antibiotic sparsomycin with prokaryotic and eukaryotic ribosomes. Biochemistry, 1991, 30, 9642-9648.	1.2	31
76	Cyanosugars. IV. Synthesis of α- <u>D</u> -Glucopyranosyl and α-D-Galactopyranosyl Cyanides and Related 1,2-CIS C-Glycosides. Journal of Carbohydrate Chemistry, 1987, 6, 273-279.	0.4	32
77	Hexose-modified anti-viral analogues of uridine 5′-disphosphate glucose derivatives. European Journal of Medicinal Chemistry, 1987, 22, 59-65.	2.6	14
78	Cyanosugars III. Tetrahedron, 1985, 41, 3867-3873.	1.0	14
79	Cyanosugars—ll. Tetrahedron, 1983, 39, 1617-1620.	1.0	41