Ashley Helton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/922667/publications.pdf

Version: 2024-02-01

44 papers 3,632 citations

236612 25 h-index 253896 43 g-index

44 all docs

44 docs citations

44 times ranked 3904 citing authors

#	Article	IF	CITATIONS
1	Vegetation Zonation Predicts Soil Carbon Mineralization and Microbial Communities in Southern New England Salt Marshes. Estuaries and Coasts, 2022, 45, 168-180.	1.0	11
2	Shifting stoichiometry: Longâ€ŧerm trends in streamâ€dissolved organic matter reveal altered C:N ratios due to history of atmospheric acid deposition. Global Change Biology, 2022, 28, 98-114.	4.2	22
3	Light and flow regimes regulate the metabolism of rivers. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	62
4	Superlinear scaling of riverine biogeochemical function with watershed size. Nature Communications, 2022, 13, 1230.	5.8	9
5	Exploring Local Riverbank Sediment Controls on the Occurrence of Preferential Groundwater Discharge Points. Water (Switzerland), 2022, 14, 11.	1.2	8
6	Seasonal Patterns of Denitrification and N2O Production in a Southern New England Salt Marsh. Wetlands, 2021, 41, 1.	0.7	7
7	Continental-scale analysis of shallow and deep groundwater contributions to streams. Nature Communications, 2021, 12, 1450.	5.8	74
8	An ecohydrological typology for thermal refuges in streams and rivers. Ecohydrology, 2021, 14, e2295.	1.1	28
9	Gradients of Anthropogenic Nutrient Enrichment Alter N Composition and DOM Stoichiometry in Freshwater Ecosystems. Global Biogeochemical Cycles, 2021, 35, e2021GB006953.	1.9	22
10	Road salt inputs alter biogeochemistry but not plant community composition in exurban forested wetlands. Ecosphere, 2021, 12, e03814.	1.0	6
11	Improved Prediction of Managementâ€Relevant Groundwater Discharge Characteristics Throughout River Networks. Water Resources Research, 2020, 56, e2020WR028027.	1.7	13
12	Evaluation of Stream and Wetland Restoration Using UAS-Based Thermal Infrared Mapping. Water (Switzerland), 2019, 11, 1568.	1.2	28
13	Emergent productivity regimes of river networks. Limnology and Oceanography Letters, 2019, 4, 173-181.	1.6	50
14	Seasonal Salinization Decreases Spatial Heterogeneity of Sulfate Reducing Activity. Soil Systems, 2019, 3, 25.	1.0	3
15	Denitrification Potential and Carbon Mineralization in Restored and Unrestored Coastal Wetland Soils Across an Urban Landscape. Wetlands, 2019, 39, 895-906.	0.7	6
16	Greenhouse gas fluxes from coastal wetlands at the intersection of urban pollution and saltwater intrusion: A soil core experiment. Soil Biology and Biochemistry, 2019, 131, 44-53.	4.2	31
17	Constraint-based simulation of multiple interactive elemental cycles in biogeochemical systems. Ecological Informatics, 2019, 50, 102-121.	2.3	7
18	Hydrologic Context Alters Greenhouse Gas Feedbacks of Coastal Wetland Salinization. Ecosystems, 2019, 22, 1108-1125.	1.6	28

#	Article	IF	CITATIONS
19	Standing Dead Trees are a Conduit for the Atmospheric Flux of CH4 and CO2 from Wetlands. Wetlands, 2018, 38, 133-143.	0.7	18
20	How network structure can affect nitrogen removal by streams. Freshwater Biology, 2018, 63, 128-140.	1.2	65
21	Continental-scale decrease in net primary productivity in streams due to climate warming. Nature Geoscience, 2018, 11, 415-420.	5.4	99
22	Salinity effects on greenhouse gas emissions from wetland soils are contingent upon hydrologic setting: a microcosm experiment. Biogeochemistry, 2018, 140, 217-232.	1.7	58
23	Scaling of dissolved organic carbon removal in river networks. Advances in Water Resources, 2017, 110, 136-146.	1.7	62
24	Fertilizer legacies meet saltwater incursion: challenges and constraints for coastal plain wetland restoration. Elementa, 2017, 5, .	1.1	18
25	Drought and saltwater incursion synergistically reduce dissolved organic carbon export from coastal freshwater wetlands. Biogeochemistry, 2016, 127, 411-426.	1.7	62
26	Do waterbody classifications predict water quality?. Journal of Environmental Management, 2016, 183, 1-12.	3.8	11
27	The Effects of Soil Moisture and Emergent Herbaceous Vegetation on Carbon Emissions from Constructed Wetlands. Wetlands, 2016, 36, 275-284.	0.7	18
28	Dissolved organic carbon lability increases with water residence time in the alluvial aquifer of a river floodplain ecosystem. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 693-706.	1.3	28
29	Thermodynamic constraints on the utility of ecological stoichiometry for explaining global biogeochemical patterns. Ecology Letters, 2015, 18, 1049-1056.	3.0	74
30	Impacts of Saltwater Incursion on Plant Communities, Anaerobic Microbial Metabolism, and Resulting Relationships in a Restored Freshwater Wetland. Ecosystems, 2014, 17, 792-807.	1.6	41
31	Relative influences of the river channel, floodplain surface, and alluvial aquifer on simulated hydrologic residence time in a montane river floodplain. Geomorphology, 2014, 205, 17-26.	1.1	66
32	Incorporating urban infrastructure into biogeochemical assessment of urban tropical streams in Puerto Rico. Biogeochemistry, 2014, 121, 271-286.	1.7	23
33	Biogeochemical regime shifts in coastal landscapes: the contrasting effects of saltwater incursion and agricultural pollution on greenhouse gas emissions from a freshwater wetland. Biogeochemistry, 2014, 120, 133-147.	1.7	47
34	Interannual drought length governs dissolved organic carbon dynamics in blackwater rivers of the western upper Suwannee River basin. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1636-1645.	1.3	19
35	Development and Application of a Simulation Environment (NEO) for Integrating Empirical and Computational Investigations of System-Level Complexity. , 2012, , .		3
36	Scaling flow path processes to fluvial landscapes: An integrated field and model assessment of temperature and dissolved oxygen dynamics in a riverâ€floodplainâ€aquifer system. Journal of Geophysical Research, 2012, 117, .	3.3	21

ASHLEY HELTON

#	Article	IF	CITATION
37	Thinking outside the channel: modeling nitrogen cycling in networked river ecosystems. Frontiers in Ecology and the Environment, 2011, 9, 229-238.	1.9	104
38	Nitrous oxide emission from denitrification in stream and river networks. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 214-219.	3.3	517
39	Interâ€regional comparison of landâ€use effects on stream metabolism. Freshwater Biology, 2010, 55, 1874-1890.	1.2	267
40	Can consumer stoichiometric regulation control nutrient spiraling in streams?. Journal of the North American Benthological Society, 2009, 28, 747-765.	3.0	46
41	Nitrate removal in stream ecosystems measured by 15N addition experiments: Total uptake. Limnology and Oceanography, 2009, 54, 653-665.	1.6	165
42	Nitrate removal in stream ecosystems measured by 15N addition experiments: Denitrification. Limnology and Oceanography, 2009, 54, 666-680.	1.6	181
43	Hydrologic spiralling: the role of multiple interactive flow paths in stream ecosystems. River Research and Applications, 2008, 24, 1018-1031.	0.7	107
44	Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature, 2008, 452, 202-205.	13.7	1,097