Staffan Kjelleberg

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9226664/staffan-kjelleberg-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

342	33,090	97	173
papers	citations	h-index	g-index
351	38,532 ext. citations	5.9	7.08
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
342	Three faces of biofilms: a microbial lifestyle, a nascent multicellular organism, and an incubator for diversity. <i>Npj Biofilms and Microbiomes</i> , 2021 , 7, 80	8.2	19
341	Functional metagenomic analysis of quorum sensing signaling in a nitrifying community. <i>Npj Biofilms and Microbiomes</i> , 2021 , 7, 79	8.2	2
340	The biofilm matrix scaffold of Pseudomonas aeruginosa contains G-quadruplex extracellular DNA structures. <i>Npj Biofilms and Microbiomes</i> , 2021 , 7, 27	8.2	4
339	N-Acyl Homoserine Lactone-Mediated Quorum Sensing Regulates Species Interactions in Multispecies Biofilm Communities. <i>Frontiers in Cellular and Infection Microbiology</i> , 2021 , 11, 646991	5.9	1
338	Carotenoids improve bacterial tolerance towards biobutanol through membrane stabilization. <i>Environmental Science: Nano</i> , 2021 , 8, 328-341	7.1	3
337	The Repressor C Protein, Pf4r, Controls Superinfection of PAO1 by the Pf4 Filamentous Phage and Regulates Host Gene Expression. <i>Viruses</i> , 2021 , 13,	6.2	2
336	Carbon starvation of Pseudomonas aeruginosa biofilms selects for dispersal insensitive mutants. <i>BMC Microbiology</i> , 2021 , 21, 255	4.5	2
335	Longitudinal assessment of antibiotic resistance gene profiles in gut microbiomes of infants at risk of eczema. <i>BMC Infectious Diseases</i> , 2020 , 20, 312	4	3
334	Convection and the Extracellular Matrix Dictate Inter- and Intra-Biofilm Quorum Sensing Communication in Environmental Systems. <i>Environmental Science & Environmental Science</i>	1đ ^{0.3}	6
333	Extracellular protein isolation from the matrix of anammox biofilm using ionic liquid extraction. <i>Applied Microbiology and Biotechnology</i> , 2020 , 104, 3643-3654	5.7	7
332	Weak acids as an alternative anti-microbial therapy. <i>Biofilm</i> , 2020 , 2, 100019	5.9	19
331	The SiaABC threonine phosphorylation pathway controls biofilm formation in response to carbon availability in Pseudomonas aeruginosa. <i>PLoS ONE</i> , 2020 , 15, e0241019	3.7	2
330	Bacterial lipopolysaccharide core structures mediate effects of butanol ingress. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2020 , 1862, 183150	3.8	5
329	Gram Typing: Gram-Typing Using Conjugated Oligoelectrolytes (Adv. Funct. Mater. 42/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 2070281	15.6	
328	A compromised developmental trajectory of the infant gut microbiome and metabolome in atopic eczema. <i>Gut Microbes</i> , 2020 , 12, 1-22	8.8	21
327	Secondary Effects of Antibiotics on Microbial Biofilms. <i>Frontiers in Microbiology</i> , 2020 , 11, 2109	5.7	12
326	Phase Transitions by an Abundant Protein in the Anammox Extracellular Matrix Mediate Cell-to-Cell Aggregation and Biofilm Formation. <i>MBio</i> , 2020 , 11,	7.8	1

325	Gram-Typing Using Conjugated Oligoelectrolytes. Advanced Functional Materials, 2020, 30, 2004068	15.6	5
324	Response of microbial membranes to butanol: interdigitation vs. disorder. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 11903-11915	3.6	11
323	Conjugated Oligoelectrolytes: A Chain-Elongated Oligophenylenevinylene Electrolyte Increases Microbial Membrane Stability (Adv. Mater. 18/2019). <i>Advanced Materials</i> , 2019 , 31, 1970133	24	
322	A Chain-Elongated Oligophenylenevinylene Electrolyte Increases Microbial Membrane Stability. <i>Advanced Materials</i> , 2019 , 31, e1808021	24	17
321	Rapid microevolution of biofilm cells in response to antibiotics. <i>Npj Biofilms and Microbiomes</i> , 2019 , 5, 34	8.2	49
320	Interactions within the microbiome alter microbial interactions with host chemical defences and affect disease in a marine holobiont. <i>Scientific Reports</i> , 2019 , 9, 1363	4.9	37
319	Vibrio cholerae residing in food vacuoles expelled by protozoa are more infectious in vivo. <i>Nature Microbiology</i> , 2019 , 4, 2466-2474	26.6	12
318	Using meta-omics of contaminated sediments to monitor changes in pathways relevant to climate regulation. <i>Environmental Microbiology</i> , 2019 , 21, 389-401	5.2	19
317	Extracellular polymeric substances of biofilms: Suffering from an identity crisis. <i>Water Research</i> , 2019 , 151, 1-7	12.5	138
316	Functional biogeography and host specificity of bacterial communities associated with the Marine Green Alga Ulva spp. <i>Molecular Ecology</i> , 2018 , 27, 1952-1965	5.7	28
315	Informed Molecular Design of Conjugated Oligoelectrolytes To Increase Cell Affinity and Antimicrobial Activity. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8069-8072	16.4	21
314	Metagenomics Reveals the Influence of Land Use and Rain on the Benthic Microbial Communities in a Tropical Urban Waterway. <i>MSystems</i> , 2018 , 3,	7.6	23
313	Matrix Polysaccharides and SiaD Diguanylate Cyclase Alter Community Structure and Competitiveness of during Dual-Species Biofilm Development with. <i>MBio</i> , 2018 , 9,	7.8	17
312	Mixed community biofilms and microbially influenced corrosion. <i>Microbiology Australia</i> , 2018 , 39, 152	0.8	5
311	Informed Molecular Design of Conjugated Oligoelectrolytes To Increase Cell Affinity and Antimicrobial Activity. <i>Angewandte Chemie</i> , 2018 , 130, 8201-8204	3.6	6
310	Quorum quenching bacteria can be used to inhibit the biofouling of reverse osmosis membranes. <i>Water Research</i> , 2017 , 112, 29-37	12.5	49
309	Real Time, Spatial, and Temporal Mapping of the Distribution of c-di-GMP during Biofilm Development. <i>Journal of Biological Chemistry</i> , 2017 , 292, 477-487	5.4	17
308	A graphene/carbon nanotube biofilm based solar-microbial fuel device for enhanced hydrogen generation. Sustainable Energy and Fuels, 2017, 1, 191-198	5.8	20

307	Pyomelanin produced by Vibrio cholerae confers resistance to predation by Acanthamoeba castellanii. <i>FEMS Microbiology Ecology</i> , 2017 , 93,	4.3	18
306	Low-Dose Nitric Oxide as Targeted Anti-biofilm Adjunctive Therapy to Treat Chronic Pseudomonas aeruginosa Infection in Cystic Fibrosis. <i>Molecular Therapy</i> , 2017 , 25, 2104-2116	11.7	106
305	Mechanistic action of weak acid drugs on biofilms. Scientific Reports, 2017, 7, 4783	4.9	28
304	All together now: experimental multispecies biofilm model systems. <i>Environmental Microbiology</i> , 2017 , 19, 42-53	5.2	55
303	Next-generation studies of microbial biofilm communities. <i>Microbial Biotechnology</i> , 2016 , 9, 677-80	6.3	23
302	Reactive oxygen species drive evolution of pro-biofilm variants in pathogens by modulating cyclic-di-GMP levels. <i>Open Biology</i> , 2016 , 6,	7	39
301	Sex, Scavengers, and Chaperones: Transcriptome Secrets of Divergent Symbiodinium Thermal Tolerances. <i>Molecular Biology and Evolution</i> , 2016 , 33, 2201-15	8.3	88
300	Mechanical properties of the superficial biofilm layer determine the architecture of biofilms. <i>Soft Matter</i> , 2016 , 12, 5718-26	3.6	38
299	Interspecific diversity reduces and functionally substitutes for intraspecific variation in biofilm communities. <i>ISME Journal</i> , 2016 , 10, 846-57	11.9	34
298	SiaA/D Interconnects c-di-GMP and RsmA Signaling to Coordinate Cellular Aggregation of Pseudomonas aeruginosa in Response to Environmental Conditions. <i>Frontiers in Microbiology</i> , 2016 , 7, 179	5.7	22
297	Multiple opportunistic pathogens can cause a bleaching disease in the red seaweed Delisea pulchra. <i>Environmental Microbiology</i> , 2016 , 18, 3962-3975	5.2	56
296	Effect of interspecific competition on trait variation in Phaeobacter inhibens biofilms. <i>Environmental Microbiology</i> , 2016 , 18, 1635-45	5.2	8
295	Epigallocatechin Gallate Remodels Overexpressed Functional Amyloids in Pseudomonas aeruginosa and Increases Biofilm Susceptibility to Antibiotic Treatment. <i>Journal of Biological Chemistry</i> , 2016 , 291, 26540-26553	5.4	42
294	Mechanical signatures of microbial biofilms in micropillar-embedded growth chambers. <i>Soft Matter</i> , 2016 , 12, 5224-32	3.6	6
293	Biofilms: an emergent form of bacterial life. <i>Nature Reviews Microbiology</i> , 2016 , 14, 563-75	22.2	2223
292	Ecogenomics reveals metals and land-use pressures on microbial communities in the waterways of a megacity. <i>Environmental Science & Environmental Scie</i>	10.3	36
291	Functional amyloids keep quorum-sensing molecules in check. <i>Journal of Biological Chemistry</i> , 2015 , 290, 6457-69	5.4	55
290	Chemically Functionalized Conjugated Oligoelectrolyte Nanoparticles for Enhancement of Current Generation in Microbial Fuel Cells. <i>ACS Applied Materials & Discrete Section</i> , 7, 14501-5	9.5	19

(2015-2015)

289	Enhanced Shewanella biofilm promotes bioelectricity generation. <i>Biotechnology and Bioengineering</i> , 2015 , 112, 2051-9	4.9	95
288	Nitric oxide treatment for the control of reverse osmosis membrane biofouling. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 2515-24	4.8	40
287	The application of nitric oxide to control biofouling of membrane bioreactors. <i>Microbial Biotechnology</i> , 2015 , 8, 549-60	6.3	11
286	RhizoFlowCell system reveals early effects of micropollutants on aquatic plant rhizosphere. <i>Environmental Pollution</i> , 2015 , 207, 205-10	9.3	1
285	Aroyleneimidazophenazine: A Sensitive Probe for Detecting CNâlAnion and its Solvatochromism Effect. <i>Journal of Heterocyclic Chemistry</i> , 2015 , 52, 1699-1704	1.9	7
284	Enhancement in hydrogen evolution using Au-TiO hollow spheres with microbial devices modified with conjugated oligoelectrolytes. <i>Npj Biofilms and Microbiomes</i> , 2015 , 1, 15020	8.2	9
283	Dispersal from Microbial Biofilms. <i>Microbiology Spectrum</i> , 2015 , 3,	8.9	12
282	In Situ Mapping of the Mechanical Properties of Biofilms by Particle-tracking Microrheology. <i>Journal of Visualized Experiments</i> , 2015 , e53093	1.6	2
281	Increased Microbial Butanol Tolerance by Exogenous Membrane Insertion Molecules. <i>ChemSusChem</i> , 2015 , 8, 3718-26	8.3	14
2 80	Employing a Flexible and Low-Cost Polypyrrole Nanotube Membrane as an Anode to Enhance Current Generation in Microbial Fuel Cells. <i>Small</i> , 2015 , 11, 3440-3	11	113
279	Dispersal from Microbial Biofilms 2015 , 343-362		2
278	Pseudomonas aeruginosa PAO1 exopolysaccharides are important for mixed species biofilm community development and stress tolerance. <i>Frontiers in Microbiology</i> , 2015 , 6, 851	5.7	49
277	VarR controls colonization and virulence in the marine macroalgal pathogen Nautella italica R11. <i>Frontiers in Microbiology</i> , 2015 , 6, 1130	5.7	14
276	Voltammetric profiling of redox-active metabolites expressed by Pseudomonas aeruginosa for diagnostic purposes. <i>Chemical Communications</i> , 2015 , 51, 3789-92	5.8	44
275	Quorum sensing-regulated chitin metabolism provides grazing resistance to Vibrio cholerae biofilms. <i>ISME Journal</i> , 2015 , 9, 1812-20	11.9	43
274	Metabolite-enabled mutualistic interaction between Shewanella oneidensis and Escherichia coli in a co-culture using an electrode as electron acceptor. <i>Scientific Reports</i> , 2015 , 5, 11222	4.9	25
273	Community quorum sensing signalling and quenching: microbial granular biofilm assembly. <i>Npj Biofilms and Microbiomes</i> , 2015 , 1, 15006	8.2	105
272	C-di-GMP regulates Pseudomonas aeruginosa stress response to tellurite during both planktonic and biofilm modes of growth. <i>Scientific Reports</i> , 2015 , 5, 10052	4.9	46

271	Hybrid Conducting Biofilm with Built-in Bacteria for High-Performance Microbial Fuel Cells. <i>ChemElectroChem</i> , 2015 , 2, 654-658	4.3	64
270	Characterization of the archaeal community fouling a membrane bioreactor. <i>Journal of Environmental Sciences</i> , 2015 , 29, 115-23	6.4	10
269	Enhancing Bidirectional Electron Transfer of Shewanella oneidensis by a Synthetic Flavin Pathway. <i>ACS Synthetic Biology</i> , 2015 , 4, 815-23	5.7	143
268	Solvent optimization for bacterial extracellular matrices: a solution for the insoluble. <i>RSC Advances</i> , 2015 , 5, 7469-7478	3.7	10
267	RBig things in small packages: the genetics of filamentous phage and effects on fitness of their host RFEMS Microbiology Reviews, 2015, 39, 465-87	15.1	76
266	Analysis of microbial community composition in a lab-scale membrane distillation bioreactor. Journal of Applied Microbiology, 2015 , 118, 940-53	4.7	16
265	Nitric oxide: a key mediator of biofilm dispersal with applications in infectious diseases. <i>Current Pharmaceutical Design</i> , 2015 , 21, 31-42	3.3	151
264	Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. <i>ISME Journal</i> , 2014 , 8, 894-907	11.9	208
263	Uncovering alternate charge transfer mechanisms in Escherichia coli chemically functionalized with conjugated oligoelectrolytes. <i>Chemical Communications</i> , 2014 , 50, 8223-6	5.8	30
262	Larger Extended anti-/syn-aroylenediimidazole polyaromatic compounds: synthesis, physical properties, self-assembly, and quasi-linear conjugation effect. <i>RSC Advances</i> , 2014 , 4, 17822-17831	3.7	20
261	Modeling cell membrane perturbation by molecules designed for transmembrane electron transfer. <i>Langmuir</i> , 2014 , 30, 2429-40	4	47
260	Comparative genomic analysis of malaria mosquito vector-associated novel pathogen Elizabethkingia anophelis. <i>Genome Biology and Evolution</i> , 2014 , 6, 1158-65	3.9	40
259	Bacterial Communication Systems 2014 , 171-188		2
258	The role of quorum sensing signalling in EPS production and the assembly of a sludge community into aerobic granules. <i>ISME Journal</i> , 2014 , 8, 1186-97	11.9	245
257	Characterization of biofouling in a lab-scale forward osmosis membrane bioreactor (FOMBR). <i>Water Research</i> , 2014 , 58, 141-51	12.5	82
256	The roles of Pseudomonas aeruginosa extracellular polysaccharides in biofouling of reverse osmosis membranes and nitric oxide induced dispersal. <i>Journal of Membrane Science</i> , 2014 , 466, 161-17	7 2 9.6	23
255	Comparison of flavins and a conjugated oligoelectrolyte in stimulating extracellular electron transport from Shewanella oneidensis MR-1. <i>Electrochemistry Communications</i> , 2014 , 41, 55-58	5.1	45
254	A stable synergistic microbial consortium for simultaneous azo dye removal and bioelectricity generation. <i>Bioresource Technology</i> , 2014 , 155, 71-6	11	21

(2013-2014)

253	Strain-specific parallel evolution drives short-term diversification during Pseudomonas aeruginosa biofilm formation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E1419-27	11.5	61
252	Micro-fabricated polydimethyl siloxane (PDMS) surfaces regulate the development of marine microbial biofilm communities. <i>Biofouling</i> , 2014 , 30, 323-35	3.3	32
251	The correlation between biofilm biopolymer composition and membrane fouling in submerged membrane bioreactors. <i>Biofouling</i> , 2014 , 30, 1093-110	3.3	20
250	Environmental cues and genes involved in establishment of the superinfective Pf4 phage of Pseudomonas aeruginosa. <i>Frontiers in Microbiology</i> , 2014 , 5, 654	5.7	18
249	Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides. <i>MBio</i> , 2014 , 5, e01536-14	7.8	106
248	Microbial biofilm formation: a need to act. <i>Journal of Internal Medicine</i> , 2014 , 276, 98-110	10.8	105
247	Biogenic tellurium nanorods as a novel antivirulence agent inhibiting pyoverdine production in Pseudomonas aeruginosa. <i>Biotechnology and Bioengineering</i> , 2014 , 111, 858-65	4.9	27
246	Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. <i>Nature Communications</i> , 2014 , 5, 4462	17.4	217
245	Membrane permeabilization underlies the enhancement of extracellular bioactivity in Shewanella oneidensis by a membrane-spanning conjugated oligoelectrolyte. <i>Applied Microbiology and Biotechnology</i> , 2014 , 98, 9021-31	5.7	29
244	Improving charge collection in Escherichia coli-carbon electrode devices with conjugated oligoelectrolytes. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 5867-72	3.6	92
243	The seaweed holobiont: understanding seaweed-bacteria interactions. <i>FEMS Microbiology Reviews</i> , 2013 , 37, 462-76	15.1	319
242	Dynamics of biofilm formation under different nutrient levels and the effect on biofouling of a reverse osmosis membrane system. <i>Biofouling</i> , 2013 , 29, 319-30	3.3	37
241	Optimal dosing regimen of nitric oxide donor compounds for the reduction of Pseudomonas aeruginosa biofilm and isolates from wastewater membranes. <i>Biofouling</i> , 2013 , 29, 203-12	3.3	49
240	Animals in a bacterial world, a new imperative for the life sciences. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 3229-36	11.5	1488
239	First case of E anophelis outbreak in an intensive-care unit. <i>Lancet, The</i> , 2013 , 382, 855-6	40	63
238	Influence of outer membrane c-type cytochromes on particle size and activity of extracellular nanoparticles produced by Shewanella oneidensis. <i>Biotechnology and Bioengineering</i> , 2013 , 110, 1831-7	. 4.9	61
237	Synthesis of cephalosporin-3Rdiazeniumdiolates: biofilm dispersing NO-donor prodrugs activated by Elactamase. <i>Chemical Communications</i> , 2013 , 49, 4791-3	5.8	41
236	Identification of five structurally unrelated quorum-sensing inhibitors of Pseudomonas aeruginosa from a natural-derivative database. <i>Antimicrobial Agents and Chemotherapy</i> , 2013 , 57, 5629-41	5.9	78

235	Bis-(3R5R)-cyclic dimeric GMP regulates antimicrobial peptide resistance in Pseudomonas aeruginosa. <i>Antimicrobial Agents and Chemotherapy</i> , 2013 , 57, 2066-75	5.9	73
234	Draft Genome Sequence of Klebsiella pneumoniae Strain KP-1. <i>Genome Announcements</i> , 2013 , 1,		6
233	Draft genome sequence of the chronic, nonclonal cystic fibrosis isolate Pseudomonas aeruginosa strain 18A. <i>Genome Announcements</i> , 2013 , 1, e0000113		3
232	Permanent draft genome sequence of Comamonas testosteroni KF-1. <i>Standards in Genomic Sciences</i> , 2013 , 8, 239-54		9
231	Engineering PQS biosynthesis pathway for enhancement of bioelectricity production in pseudomonas aeruginosa microbial fuel cells. <i>PLoS ONE</i> , 2013 , 8, e63129	3.7	56
230	Relative contributions of Vibrio polysaccharide and quorum sensing to the resistance of Vibrio cholerae to predation by heterotrophic protists. <i>PLoS ONE</i> , 2013 , 8, e56338	3.7	25
229	Dynamic modelling of cell death during biofilm development. <i>Journal of Theoretical Biology</i> , 2012 , 295, 23-36	2.3	42
228	Minimal increase in genetic diversity enhances predation resistance. <i>Molecular Ecology</i> , 2012 , 21, 1741-	5 3 .7	19
227	Biofilm dispersal cells of a cystic fibrosis Pseudomonas aeruginosa isolate exhibit variability in functional traits likely to contribute to persistent infection. <i>FEMS Immunology and Medical Microbiology</i> , 2012 , 66, 251-64		23
226	Biofilm shows spatially stratified metabolic responses to contaminant exposure. <i>Environmental Microbiology</i> , 2012 , 14, 2901-10	5.2	35
225	Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, E1878-87	11.5	261
224	Phaeobacter gallaeciensis genomes from globally opposite locations reveal high similarity of adaptation to surface life. <i>ISME Journal</i> , 2012 , 6, 2229-44	11.9	110
223	Cephalosporin-3?-diazeniumdiolates: Targeted NO-Donor Prodrugs for Dispersing Bacterial Biofilms. <i>Angewandte Chemie</i> , 2012 , 124, 9191-9194	3.6	9
222	Cephalosporin-3Rdiazeniumdiolates: targeted NO-donor prodrugs for dispersing bacterial biofilms. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 9057-60	16.4	116
221	The presence and role of bacterial quorum sensing in activated sludge. <i>Microbial Biotechnology</i> , 2012 , 5, 621-33	6.3	92
220	Molecular dynamics unlocks atomic level self-assembly of the exopolysaccharide matrix of water-treatment granular biofilms. <i>Biomacromolecules</i> , 2012 , 13, 1965-72	6.9	16
219	Glucose starvation-induced dispersal of Pseudomonas aeruginosa biofilms is cAMP and energy dependent. <i>PLoS ONE</i> , 2012 , 7, e42874	3.7	52
218	Metaproteogenomic analysis of a community of sponge symbionts. <i>ISME Journal</i> , 2012 , 6, 1515-25	11.9	99

(2011-2012)

217	Assessing the effectiveness of functional genetic screens for the identification of bioactive metabolites. <i>Marine Drugs</i> , 2012 , 11, 40-9	6	14
216	Community structure and functional gene profile of bacteria on healthy and diseased thalli of the red seaweed Delisea pulchra. <i>PLoS ONE</i> , 2012 , 7, e50854	3.7	59
215	Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. <i>Nature Reviews Microbiology</i> , 2011 , 10, 39-50	22.2	550
214	Phylogenetic Screening of Metagenomic Libraries Using Homing Endonuclease Restriction and Marker Insertion 2011 , 245-249		
213	Identification of the antibacterial compound produced by the marine epiphytic bacterium Pseudovibrio sp. D323 and related sponge-associated bacteria. <i>Marine Drugs</i> , 2011 , 9, 1391-402	6	62
212	Genomes and virulence factors of novel bacterial pathogens causing bleaching disease in the marine red alga Delisea pulchra. <i>PLoS ONE</i> , 2011 , 6, e27387	3.7	75
211	Complete genome sequence of Parvibaculum lavamentivorans type strain (DS-1(T)). <i>Standards in Genomic Sciences</i> , 2011 , 5, 298-310		29
210	Temperature induced bacterial virulence and bleaching disease in a chemically defended marine macroalga. <i>Environmental Microbiology</i> , 2011 , 13, 529-37	5.2	101
209	Climate change and disease: bleaching of a chemically defended seaweed. <i>Global Change Biology</i> , 2011 , 17, 2958-2970	11.4	118
208	A polyphasic approach to the exploration of collagenolytic activity in the bacterial community associated with the marine sponge Cymbastela concentrica. <i>FEMS Microbiology Letters</i> , 2011 , 321, 24-9	2.9	5
207	In situ grazing resistance of Vibrio cholerae in the marine environment. <i>FEMS Microbiology Ecology</i> , 2011 , 76, 504-12	4.3	23
206	Functional genomic analysis of an uncultured Eproteobacterium in the sponge Cymbastela concentrica. <i>ISME Journal</i> , 2011 , 5, 427-35	11.9	41
205	Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis. <i>ISME Journal</i> , 2011 , 5, 590-600	11.9	254
204	Antidiatom and antibacterial activity of epiphytic bacteria isolated from Ulva lactuca in tropical waters. <i>World Journal of Microbiology and Biotechnology</i> , 2011 , 27, 1543-1549	4.4	26
203	Bacterial community assembly based on functional genes rather than species. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 14288-93	11.5	521
202	Surfactant enhanced lipase containing films characterized by confocal laser scanning microscopy. <i>Colloids and Surfaces B: Biointerfaces</i> , 2011 , 82, 291-6	6	2
201	Marine bacteria from Danish coastal waters show antifouling activity against the marine fouling bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis independent of bacteriocidal activity. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 8557-67	4.8	42
200	Novel antibacterial proteins from the microbial communities associated with the sponge Cymbastela concentrica and the green alga Ulva australis. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 1512-5	4.8	30

199	Species-specific patterns in the vulnerability of Larbon-starved bacteria to protist grazing. <i>Aquatic Microbial Ecology</i> , 2011 , 64, 105-116	1.1	10
198	Ability of Pseudoalteromonas tunicata to colonize natural biofilms and its effect on microbial community structure. <i>FEMS Microbiology Ecology</i> , 2010 , 73, 450-7	4.3	17
197	Variability and abundance of the epiphytic bacterial community associated with a green marine Ulvacean alga. <i>ISME Journal</i> , 2010 , 4, 301-11	11.9	117
196	Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. <i>ISME Journal</i> , 2010 , 4, 1557-67	11.9	206
195	Identification of compounds with bioactivity against the nematode Caenorhabditis elegans by a screen based on the functional genomics of the marine bacterium Pseudoalteromonas tunicata D2. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 5710-7	4.8	40
194	Identification of ciliate grazers of autotrophic bacteria in ammonia-oxidizing activated sludge by RNA stable isotope probing. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 2203-11	4.8	32
193	Development of novel drugs from marine surface associated microorganisms. <i>Marine Drugs</i> , 2010 , 8, 438-59	6	165
192	Free nitrous acid (FNA) inhibition on denitrifying poly-phosphate accumulating organisms (DPAOs). <i>Applied Microbiology and Biotechnology</i> , 2010 , 88, 359-69	5.7	61
191	Development of a treatment solution for reductive dechlorination of hexachloro-1,3-butadiene in vadose zone soil. <i>Biodegradation</i> , 2010 , 21, 947-56	4.1	10
190	Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation. <i>PLoS ONE</i> , 2009 , 4, e5513	3.7	135
189	Selective extraction of bacterial DNA from the surfaces of macroalgae. <i>Applied and Environmental Microbiology</i> , 2009 , 75, 252-6	4.8	48
188	The genomic basis of trophic strategy in marine bacteria. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 15527-33	11.5	472
187	Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. <i>Journal of Bacteriology</i> , 2009 , 191, 7333-42	3.5	364
186	Phylogenetic screening of a bacterial, metagenomic library using homing endonuclease restriction and marker insertion. <i>Nucleic Acids Research</i> , 2009 , 37, e144	20.1	13
185	Nitric oxide-mediated dispersal in single- and multi-species biofilms of clinically and industrially relevant microorganisms. <i>Microbial Biotechnology</i> , 2009 , 2, 370-8	6.3	200
184	The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. <i>ISME Journal</i> , 2009 , 3, 271-82	11.9	216
183	Gene expression characteristics of a cystic fibrosis epidemic strain of Pseudomonas aeruginosa during biofilm and planktonic growth. <i>FEMS Microbiology Letters</i> , 2009 , 292, 107-14	2.9	37
182	Antimicrobial activity observed among cultured marine epiphytic bacteria reflects their potential as a source of new drugs. <i>FEMS Microbiology Ecology</i> , 2009 , 69, 113-24	4.3	87

(2007-2009)

181	SiaA and SiaD are essential for inducing autoaggregation as a specific response to detergent stress in Pseudomonas aeruginosa. <i>Environmental Microbiology</i> , 2009 , 11, 3073-86	5.2	70
180	AHL-driven quorum-sensing circuits: their frequency and function among the Proteobacteria. <i>ISME Journal</i> , 2008 , 2, 345-9	11.9	206
179	Pseudomonas aeruginosa uses type III secretion system to kill biofilm-associated amoebae. <i>ISME Journal</i> , 2008 , 2, 843-52	11.9	101
178	Ecology of type II secretion in marine gammaproteobacteria. <i>Environmental Microbiology</i> , 2008 , 10, 110	1 ₅ 72	26
177	Unlocking the diversity and biotechnological potential of marine surface associated microbial communities. <i>Current Opinion in Microbiology</i> , 2008 , 11, 219-25	7.9	142
176	Hydrogen peroxide linked to lysine oxidase activity facilitates biofilm differentiation and dispersal in several gram-negative bacteria. <i>Journal of Bacteriology</i> , 2008 , 190, 5493-501	3.5	105
175	Role of quorum sensing by Pseudomonas aeruginosa in microbial keratitis and cystic fibrosis. <i>Microbiology (United Kingdom)</i> , 2008 , 154, 2184-2194	2.9	62
174	Transcriptome analyses and biofilm-forming characteristics of a clonal Pseudomonas aeruginosa from the cystic fibrosis lung. <i>Journal of Medical Microbiology</i> , 2008 , 57, 1454-1465	3.2	43
173	Proteomic, microarray, and signature-tagged mutagenesis analyses of anaerobic Pseudomonas aeruginosa at pH 6.5, likely representing chronic, late-stage cystic fibrosis airway conditions. <i>Journal of Bacteriology</i> , 2008 , 190, 2739-58	3.5	79
172	Marine biofilm bacteria evade eukaryotic predation by targeted chemical defense. <i>PLoS ONE</i> , 2008 , 3, e2744	3.7	149
171	Analysis of the Pseudoalteromonas tunicata genome reveals properties of a surface-associated life style in the marine environment. <i>PLoS ONE</i> , 2008 , 3, e3252	3.7	98
170	Recruitment of the sea urchin Heliocidaris erythrogramma and the distribution and abundance of inducing bacteria in the field. <i>Aquatic Microbial Ecology</i> , 2008 , 53, 161-171	1.1	29
169	Detection and inhibition of bacterial cell-cell communication. <i>Methods in Molecular Biology</i> , 2008 , 431, 55-68	1.4	3
168	Inhibition of fouling by marine bacteria immobilised in kappa-carrageenan beads. <i>Biofouling</i> , 2007 , 23, 287-94	3.3	23
167	Profiling the secretome of the marine bacterium Pseudoalteromonas tunicata using amine-specific isobaric tagging (iTRAQ). <i>Journal of Proteome Research</i> , 2007 , 6, 967-75	5.6	43
166	Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 278-88	4.8	401
165	Microbial landscapes: new paths to biofilm research. <i>Nature Reviews Microbiology</i> , 2007 , 5, 76-81	22.2	239
164	The ISME journal: a major milestone for the International Society for Microbial Ecology and the microbial ecology community. <i>ISME Journal</i> , 2007 , 1, 3-4	11.9	

163	The use of functional genomics for the identification of a gene cluster encoding for the biosynthesis of an antifungal tambjamine in the marine bacterium Pseudoalteromonas tunicata. <i>Environmental Microbiology</i> , 2007 , 9, 814-8	5.2	55
162	Molecular investigation of the distribution, abundance and diversity of the genus Pseudoalteromonas in marine samples. <i>FEMS Microbiology Ecology</i> , 2007 , 61, 348-61	4.3	42
161	Bacterial quorum sensing and interference by naturally occurring biomimics. <i>Analytical and Bioanalytical Chemistry</i> , 2007 , 387, 445-53	4.4	77
160	Low densities of epiphytic bacteria from the marine alga Ulva australis inhibit settlement of fouling organisms. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 7844-52	4.8	117
159	Biofilm differentiation and dispersal in mucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. <i>Microbiology (United Kingdom)</i> , 2007 , 153, 3264-3274	2.9	85
158	Quorum-sensing regulation of adhesion in Serratia marcescens MG1 is surface dependent. <i>Journal of Bacteriology</i> , 2007 , 189, 2702-11	3.5	83
157	Vibrio cholerae strains possess multiple strategies for abiotic and biotic surface colonization. Journal of Bacteriology, 2007 , 189, 5348-60	3.5	67
156	Phenotypic diversification and adaptation of Serratia marcescens MG1 biofilm-derived morphotypes. <i>Journal of Bacteriology</i> , 2007 , 189, 119-30	3.5	52
155	Impact of Pseudomonas aeruginosa quorum sensing on biofilm persistence in an in vivo intraperitoneal foreign-body infection model. <i>Microbiology (United Kingdom)</i> , 2007 , 153, 2312-2320	2.9	104
154	Comparisons of diversity of bacterial communities associated with three sessile marine eukaryotes. <i>Aquatic Microbial Ecology</i> , 2007 , 48, 217-229	1.1	113
153	Catalyzed reporter deposition-fluorescence in situ hybridization allows for enrichment-independent detection of microcolony-forming soil bacteria. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 918-22	4.8	36
152	A mannose-sensitive haemagglutinin (MSHA)-like pilus promotes attachment of Pseudoalteromonas tunicata cells to the surface of the green alga Ulva australis. <i>Microbiology (United Kingdom)</i> , 2006 , 152, 2875-2883	2.9	27
151	Unravelling the role of the ToxR-like transcriptional regulator WmpR in the marine antifouling bacterium Pseudoalteromonas tunicata. <i>Microbiology (United Kingdom)</i> , 2006 , 152, 1385-1394	2.9	23
150	Inhibition of fungal colonization by Pseudoalteromonas tunicata provides a competitive advantage during surface colonization. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 6079-87	4.8	50
149	Enhanced benzaldehyde tolerance in Zymomonas mobilis biofilms and the potential of biofilm applications in fine-chemical production. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 1639-44	4.8	77
148	Ecological advantages of autolysis during the development and dispersal of Pseudoalteromonas tunicata biofilms. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 5414-20	4.8	69
147	Enhanced Benzaldehyde Tolerance in Zymomonas mobilis Biofilms and the Potential of Biofilm Applications in Fine-Chemical Production. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 5678-5678	4.8	2
146	The role of quorum sensing and the effect of environmental conditions on biofilm formation by strains of Vibrio vulnificus. <i>Biofouling</i> , 2006 , 22, 161-172	3.3	22

(2005-2006)

145	Microbial colonization and competition on the marine alga Ulva australis. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 5547-55	4.8	88
144	Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 3916-23	4.8	470
143	Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. <i>Journal of Bacteriology</i> , 2006 , 188, 7344-53	3.5	576
142	A CARD-FISH protocol for the identification and enumeration of epiphytic bacteria on marine algae. <i>Journal of Microbiological Methods</i> , 2006 , 65, 604-7	2.8	38
141	Biofilm dispersal and exacerbations of cystic fibrosis lung disease. <i>Pediatric Pulmonology</i> , 2006 , 41, 1254; author reply 1255	3.5	1
140	The role of quorum sensing mediated developmental traits in the resistance of Serratia marcescens biofilms against protozoan grazing. <i>Environmental Microbiology</i> , 2006 , 8, 1017-25	5.2	50
139	Changes in cell morphology and motility in the marine Vibrio sp. strain S14 during conditions of starvation and recovery. <i>FEMS Microbiology Letters</i> , 2006 , 146, 23-29	2.9	19
138	A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. <i>Molecular Microbiology</i> , 2006 , 59, 1114-28	4.1	719
137	Larval settlement of the common Australian sea urchin Heliocidaris erythrogramma in response to bacteria from the surface of coralline algae. <i>Oecologia</i> , 2006 , 149, 604-19	2.9	157
136	Competitive interactions in mixed-species biofilms containing the marine bacterium Pseudoalteromonas tunicata. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 1729-36	4.8	208
135	Off the hookhow bacteria survive protozoan grazing. <i>Trends in Microbiology</i> , 2005 , 13, 302-7	12.4	431
134	Biogeography of bacteria associated with the marine sponge Cymbastela concentrica. <i>Environmental Microbiology</i> , 2005 , 7, 419-33	5.2	106
133	Grazing resistance of Pseudomonas aeruginosa biofilms depends on type of protective mechanism, developmental stage and protozoan feeding mode. <i>Environmental Microbiology</i> , 2005 , 7, 1593-601	5.2	104
132	Use of solid-phase extraction to enable enhanced detection of acyl homoserine lactones (AHLs) in environmental samples. <i>Analytical and Bioanalytical Chemistry</i> , 2005 , 383, 132-7	4.4	16
131	Modeling the effect of acylated homoserine lactone antagonists in Pseudomonas aeruginosa. <i>BioSystems</i> , 2005 , 80, 201-13	1.9	32
130	Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. <i>Journal of Bacteriology</i> , 2005 , 187, 3477-85	3.5	210
129	Clinical significance of seeding dispersal in biofilms. <i>Microbiology (United Kingdom)</i> , 2005 , 151, 3452-345	3 .9	11
128	Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 16819-24	11.5	240

127	The LuxR receptor: the sites of interaction with quorum-sensing signals and inhibitors. <i>Microbiology</i> (<i>United Kingdom</i>), 2005 , 151, 3589-3602	2.9	142
126	Isolation and structure elucidation of a novel yellow pigment from the marine bacterium Pseudoalteromonas tunicata. <i>Molecules</i> , 2005 , 10, 1286-91	4.8	81
125	Evidence for acyl homoserine lactone signal production in bacteria associated with marine sponges. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 4387-9	4.8	84
124	Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 1593-9	4.8	175
123	Differential gene expression to investigate the effect of (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone on Bacillus subtilis. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 4941-9	4.8	52
122	Pseudomonas aeruginosa with lasI quorum-sensing deficiency during corneal infection. <i>Investigative Ophthalmology and Visual Science</i> , 2004 , 45, 1897-903		91
121	Real-time quantitative PCR for assessment of abundance of Pseudoalteromonas species in marine samples. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 2373-82	4.8	79
120	Bacteriophage and phenotypic variation in Pseudomonas aeruginosa biofilm development. <i>Journal of Bacteriology</i> , 2004 , 186, 8066-73	3.5	205
119	Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1. <i>Journal of Bacteriology</i> , 2004 , 186, 692-8	3.5	188
118	Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing. <i>Environmental Microbiology</i> , 2004 , 6, 218-26	5.2	147
117	Influence of petroleum contamination and biostimulation treatment on the diversity of Pseudomonas spp. in soil microcosms as evaluated by 16S rRNA based-PCR and DGGE. <i>Letters in Applied Microbiology</i> , 2004 , 38, 93-8	2.9	23
116	Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. <i>Environmental Microbiology</i> , 2004 , 6, 121-30	5.2	198
115	Impact of oil contamination and biostimulation on the diversity of indigenous bacterial communities in soil microcosms. <i>FEMS Microbiology Ecology</i> , 2004 , 49, 295-305	4.3	74
114	The control of Staphylococcus epidermidis biofilm formation and in vivo infection rates by covalently bound furanones. <i>Biomaterials</i> , 2004 , 25, 5023-30	15.6	131
113	Biofilm development and cell death in the marine bacterium Pseudoalteromonas tunicata. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 3232-8	4.8	110
112	Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. <i>EMBO Journal</i> , 2003 , 22, 3803-15	13	1019
111	The alternative sigma factor RpoN regulates the quorum sensing gene rhll in Pseudomonas aeruginosa. <i>FEMS Microbiology Letters</i> , 2003 , 220, 187-95	2.9	69
110	Identification of quorum-sensing regulated proteins in the opportunistic pathogen Pseudomonas aeruginosa by proteomics. <i>Environmental Microbiology</i> , 2003 , 5, 1350-69	5.2	120

(2001-2003)

109	Bacterial biofilms: prokaryotic adventures in multicellularity. <i>Current Opinion in Microbiology</i> , 2003 , 6, 578-85	7.9	219
108	Cell death in Pseudomonas aeruginosa biofilm development. <i>Journal of Bacteriology</i> , 2003 , 185, 4585-9	923.5	457
107	Signal-mediated cross-talk regulates stress adaptation in Vibrio species. <i>Microbiology (United Kingdom)</i> , 2003 , 149, 1923-1933	2.9	51
106	The role of regulators in the expression of quorum-sensing signals in Pseudomonas aeruginosa. Journal of Molecular Microbiology and Biotechnology, 2003 , 6, 88-100	0.9	40
105	Multivariate optimization of polymerase chain reaction for microbial community analysis. <i>Marine Biotechnology</i> , 2002 , 4, 423-30	3.4	3
104	Correlation between pigmentation and antifouling compounds produced by Pseudoalteromonas tunicata. <i>Environmental Microbiology</i> , 2002 , 4, 433-42	5.2	102
103	Antifouling activities expressed by marine surface associated Pseudoalteromonas species. <i>FEMS Microbiology Ecology</i> , 2002 , 41, 47-58	4.3	85
102	Defences against oxidative stress during starvation in bacteria. <i>Antonie Van Leeuwenhoek</i> , 2002 , 81, 3-	132.1	48
101	Chemical cues for surface colonization. <i>Journal of Chemical Ecology</i> , 2002 , 28, 1935-51	2.7	139
100	Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. <i>Microbiology</i> (United Kingdom), 2002 , 148, 1119-1127	2.9	471
99	Identification and characterization of a putative transcriptional regulator controlling the expression of fouling inhibitors in Pseudoalteromonas tunicata. <i>Applied and Environmental Microbiology</i> , 2002 , 68, 372-8	4.8	51
98	Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. <i>Microbiology (United Kingdom)</i> , 2002 , 148, 87-102	2.9	785
97	Is there a role for quorum sensing signals in bacterial biofilms?. <i>Current Opinion in Microbiology</i> , 2002 , 5, 254-8	7.9	202
96	Role of spoT-dependent ppGpp accumulation in the survival of light-exposed starved bacteria. <i>Microbiology (United Kingdom)</i> , 2002 , 148, 559-570	2.9	31
95	Genetic and chemical tools for investigating signaling processes in biofilms. <i>Methods in Enzymology</i> , 2001 , 336, 108-28	1.7	5
94	Halogenated furanones from the red alga, Delisea pulchra, inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogen Erwinia carotovora. <i>FEMS Microbiology Letters</i> , 2001 , 205, 131-8	2.9	132
93	Inhibition of algal spore germination by the marine bacterium Pseudoalteromonas tunicata. <i>FEMS Microbiology Ecology</i> , 2001 , 35, 67-73	4.3	98
92	SmcR-dependent regulation of adaptive phenotypes in Vibrio vulnificus. <i>Journal of Bacteriology</i> , 2001 , 183, 758-62	3.5	75

91	Kinetics of the AHL regulatory system in a model biofilm system: how many bacteria constitute a "quorum"?. <i>Journal of Molecular Biology</i> , 2001 , 309, 631-40	6.5	43
90	A new metabolite from the marine bacterium Vibrio angustum S14. <i>Journal of Natural Products</i> , 2001 , 64, 531-2	4.9	9
89	Phylogenetic relationship and antifouling activity of bacterial epiphytes from the marine alga Ulva lactuca. <i>Environmental Microbiology</i> , 2000 , 2, 343-7	5.2	109
88	The role of RNA stability during bacterial stress responses and starvation. <i>Environmental Microbiology</i> , 2000 , 2, 355-65	5.2	72
87	A novel and sensitive method for the quantification of N-3-oxoacyl homoserine lactones using gas chromatography-mass spectrometry: application to a model bacterial biofilm. <i>Environmental Microbiology</i> , 2000 , 2, 530-41	5.2	258
86	Inhibition of luminescence and virulence in the black tiger prawn (Penaeus monodon) pathogen Vibrio harveyi by intercellular signal antagonists. <i>Applied and Environmental Microbiology</i> , 2000 , 66, 207	9 ⁴ 8 ⁸ 4	182
85	Evidence for a role of rpoE in stressed and unstressed cells of marine Vibrio angustum strain S14. Journal of Bacteriology, 2000 , 182, 6964-74	3.5	17
84	How Delisea pulchra furanones affect quorum sensing and swarming motility in Serratia liquefaciens MG1. <i>Microbiology (United Kingdom)</i> , 2000 , 146 Pt 12, 3237-3244	2.9	204
83	Bacteria immobilised in Gels: Improved methodologies for antifouling and biocontrol applications. <i>Biofouling</i> , 2000 , 15, 109-17	3.3	31
82	Luminescence control in the marine bacterium Vibrio fischeri: An analysis of the dynamics of lux regulation. <i>Journal of Molecular Biology</i> , 2000 , 296, 1127-37	6.5	61
81	The marine pathogen Vibrio vulnificus encodes a putative homologue of the Vibrio harveyi regulatory gene, luxR: a genetic and phylogenetic comparison. <i>Gene</i> , 2000 , 248, 213-21	3.8	45
80	rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. <i>Applied and Environmental Microbiology</i> , 2000 , 66, 3376-80	4.8	346
79	Quorum-sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram-negative bacteria. <i>Molecular Microbiology</i> , 1999 , 33, 1254-66	4.1	421
78	Carnobacterium inhibens sp. nov., isolated from the intestine of Atlantic salmon (Salmo salar). <i>International Journal of Systematic and Evolutionary Microbiology</i> , 1999 , 49 Pt 4, 1891-8	2.2	57
77	Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. <i>FEMS Microbiology Ecology</i> , 1999 , 30, 285-293	4.3	376
76	Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. <i>FEMS Microbiology Ecology</i> , 1999 , 30, 285-293	4.3	219
75	13C NMR study of N-acyl-S-homoserine lactone derivatives 1999 , 37, 157-158		3
74	Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology (United Kingdom), 1999, 145 (Pt 2), 283-291	2.9	500

73	Nonculturability: adaptation or debilitation?. FEMS Microbiology Ecology, 1998, 25, 1-9	4.3	190
72	Cycles of famine and feast: the starvation and outgrowth strategies of a marineVibrio. <i>Journal of Biosciences</i> , 1998 , 23, 501-511	2.3	30
71	Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra. <i>Aquatic Microbial Ecology</i> , 1998 , 15, 233-246	1.1	194
70	Chemical inhibition of epibiota by Australian seaweeds. <i>Biofouling</i> , 1998 , 12, 227-244	3.3	75
69	Implications of rRNA operon copy number and ribosome content in the marine oligotrophic ultramicrobacterium Sphingomonas sp. strain RB2256. <i>Applied and Environmental Microbiology</i> , 1998 , 64, 4433-8	4.8	133
68	Extracellular signal molecule(s) involved in the carbon starvation response of marine Vibrio sp. strain S14. <i>Journal of Bacteriology</i> , 1998 , 180, 201-9	3.5	40
67	Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. <i>Journal of Bacteriology</i> , 1998 , 180, 742-5	3.5	77
66	The starvation-stress response of. <i>Microbiology (United Kingdom)</i> , 1997 , 143, 2305-2312	2.9	30
65	Chemical defenses of seaweeds against microbial colonization. <i>Biodegradation</i> , 1997 , 8, 211-220	4.1	76
64	Colonization in the fish intestinal tract and production of inhibitory substances in intestinal mucus and faecal extracts by Carnobacterium sp. strain K1. <i>Journal of Fish Diseases</i> , 1997 , 20, 383-392	2.6	142
63	Reinvestigation of the sulfuric acid-catalysed cyclisation of brominated 2-alkyllevulinic acids to 3-alkyl-5-methylene-2(5H)-furanones. <i>Tetrahedron</i> , 1997 , 53, 15813-15826	2.4	84
62	Global analysis of physiological responses in marine bacteria. <i>Electrophoresis</i> , 1997 , 18, 1441-50	3.6	14
61	Do marine natural products interfere with prokaryotic AHL regulatory systems?. <i>Aquatic Microbial Ecology</i> , 1997 , 13, 85-93	1.1	111
60	Construction and use of a new vector/transposon, pLBT::mim-Tn10:lac:kan, to identify environmentally responsive genes in a marine bacterium. <i>FEMS Microbiology Letters</i> , 1996 , 140, 287-29.	4 ^{2.9}	13
59	Stress resistance and recovery potential of culturable and viable but nonculturable cells of Vibrio vulnificus. <i>Microbiology (United Kingdom)</i> , 1996 , 142 (Pt 4), 845-853	2.9	79
58	Toward biological antifouling surface coatings: Marine bacteria immobilized in hydrogel inhibit barnacle larvae. <i>Biofouling</i> , 1995 , 8, 293-301	3.3	30
57	The DnaK homologue of the marine Vibrio sp. strain S14 binds to the unprocessed form of a carbon starvation-specific periplasmic protein. <i>Molecular Microbiology</i> , 1994 , 11, 861-8	4.1	4
56	How do non-differentiating bacteria adapt to starvation?. <i>Antonie Van Leeuwenhoek</i> , 1993 , 63, 333-41	2.1	131

55	The induction of stress proteins in three marine Vibrio during carbon starvation. <i>FEMS Microbiology Ecology</i> , 1993 , 12, 185-194	4.3	15
54	Changes in viability, respiratory activity and morphology of the marine Vibrio sp. strain S14 during starvation of individual nutrients and subsequent recovery. <i>FEMS Microbiology Ecology</i> , 1993 , 12, 215-2	22 3 .3	50
53	Starvation and Recovery of Vibrio 1993 , 103-127		42
52	Bacteria starved for prolonged periods develop increased protection against lethal temperatures. <i>FEMS Microbiology Ecology</i> , 1992 , 10, 229-236	4.3	30
51	Bacteria starved for prolonged periods develop increased protection against lethal temperatures. <i>FEMS Microbiology Letters</i> , 1992 , 101, 229-236	2.9	8
50	Low temperature induced non-culturability and killing of Vibrio vulnificus. <i>FEMS Microbiology Letters</i> , 1992 , 100, 205-10	2.9	71
49	Low temperature induced non-culturability and killing of Vibrio vulnificus. <i>FEMS Microbiology Letters</i> , 1992 , 100, 205-210	2.9	17
48	Inhibition of Settlement by Larvae of Balanus amphitrite and Ciona intestinalis by a Surface-Colonizing Marine Bacterium. <i>Applied and Environmental Microbiology</i> , 1992 , 58, 2111-5	4.8	160
47	Virus ecology. <i>Nature</i> , 1991 , 351, 612-612	50.4	4
46	Behaviour of IncP-1 plasmids and a miniMu transposon in a marine Vibrio sp.: isolation of starvation inducible lac operon fusions. <i>FEMS Microbiology Ecology</i> , 1991 , 9, 83-93	4.3	3
45	Behaviour of IncP-1 plasmids and a miniMu transposon in a marineVibriosp.: isolation of starvation induciblelacoperon fusions. <i>FEMS Microbiology Letters</i> , 1991 , 86, 83-94	2.9	13
44	Physiological and molecular adaptation to starvation and recovery from starvation by the marine Vibrio sp. S14. <i>FEMS Microbiology Ecology</i> , 1990 , 7, 129-140	4.3	2
43	Physiological and molecular adaptation to starvation and recovery from starvation by the marineVibriosp. S14. <i>FEMS Microbiology Letters</i> , 1990 , 74, 129-140	2.9	68
42	Starvation-induced modulations in binding protein-dependent glucose transport by the marine sp. S14. <i>FEMS Microbiology Letters</i> , 1990 , 70, 205-209	2.9	12
41	Starvation-induced modulations in binding protein-dependent glucose transport by the marine Vibrio sp. S14. <i>FEMS Microbiology Letters</i> , 1990 , 58, 205-9	2.9	16
40	Exoprotease Activity of Two Marine Bacteria during Starvation. <i>Applied and Environmental Microbiology</i> , 1990 , 56, 218-23	4.8	57
39	Chemotactic Responses of Marine Vibrio sp. Strain S14 (CCUG 15956) to Low-Molecular-Weight Substances under Starvation and Recovery Conditions. <i>Applied and Environmental Microbiology</i> , 1990 , 56, 3699-704	4.8	36
38	Inhibition by antibiotics of the bacterial response to long-term starvation of Salmonella typhimurium and the colon microbiota of mice. <i>Journal of Applied Bacteriology</i> , 1989 , 67, 53-9		7

37	The role of an extracellular polysaccharide produced by the marine Pseudomonas sp. S9 in cellular detachment during starvation. <i>Canadian Journal of Microbiology</i> , 1989 , 35, 309-312	3.2	38
36	Incorporation of tritiated thymidine by marine bacterial isolates when undergoing a starvation survival response. <i>Archives of Microbiology</i> , 1988 , 149, 427-432	3	18
35	A screening method for bacterial corrosion of metals. <i>Journal of Microbiological Methods</i> , 1988 , 8, 191-1	1 9<u>.8</u>8	50
34	The transient phase between growth and nongrowth of heterotrophic bacteria, with emphasis on the marine environment. <i>Annual Review of Microbiology</i> , 1987 , 41, 25-49	17.5	253
33	A new system for estimating the bacterial cheomotactic response applied to a model oligotrophic marine system. <i>Journal of Microbiological Methods</i> , 1987 , 7, 45-55	2.8	3
32	The effect of cadmium on starved heterotrophic bacteria isolated from marine waters. <i>FEMS Microbiology Letters</i> , 1987 , 45, 143-151	2.9	15
31	Uptake of leucine by a marine Gram-negative heterotrophic bacterium during exposure to starvation conditions. <i>FEMS Microbiology Letters</i> , 1987 , 45, 233-241	2.9	51
30	The production and release of an extracellular polysaccharide during starvation of a marine Pseudomonas sp. and the effect thereof on adhesion. <i>Archives of Microbiology</i> , 1986 , 145, 220-7	3	117
29	Chemical changes in cell envelope and poly-Ehydroxybutyrate during short term starvation of a marine bacterial isolate. <i>Archives of Microbiology</i> , 1986 , 144, 340-345	3	53
28	Starvation of marine flounder, squid and laboratory mice and its effect on the intestinal microbiota. <i>FEMS Microbiology Letters</i> , 1986 , 38, 187-195	2.9	18
27	Relative changes in incorporation rates of leucine and methionine during starvation survival of two bacteria isolated from marine waters. <i>FEMS Microbiology Letters</i> , 1986 , 38, 285-292	2.9	37
26	Hydrophobic Interactions: Role in Bacterial Adhesion. <i>Advances in Microbial Ecology</i> , 1986 , 353-393		235
25	Changes in Protein Composition of Three Bacterial Isolates from Marine Waters during Short Periods of Energy and Nutrient Deprivation. <i>Applied and Environmental Microbiology</i> , 1986 , 52, 1419-21	4.8	34
24	Physiological and morphological changes during short term starvation of marine bacterial islates. <i>Archives of Microbiology</i> , 1985 , 142, 326-332	3	163
23	Fimbriae mediated nonspecific adhesion of Salmonella typhimurium to mineral particles. <i>Archives of Microbiology</i> , 1985 , 143, 6-10	3	35
22	Oligotrophic and copiotrophic marine bacterial? observations related to attachment. <i>FEMS Microbiology Letters</i> , 1985 , 31, 89-96	2.9	1
21	ATP level of a starving surface-bound and free-living marineVibriosp <i>FEMS Microbiology Letters</i> , 1984 , 24, 93-96	2.9	6
20	Starvation-induced effects on bacterial surface characteristics. <i>Applied and Environmental Microbiology</i> , 1984 , 48, 497-503	4.8	171

19	Responses of marine bacteria under starvation conditions at a solid-water interface. <i>Applied and Environmental Microbiology</i> , 1983 , 45, 43-7	4.8	97
18	Initial phases of starvation and activity of bacteria at surfaces. <i>Applied and Environmental Microbiology</i> , 1983 , 46, 978-84	4.8	139
17	Hydrophobic and electrostatic characterization of surface structures of bacteria and its relationship to adhesion to an air-water interface. <i>Archives of Microbiology</i> , 1982 , 131, 308-312	3	103
16	Bacterial scavenging: Utilization of fatty acids localized at a solid-liquid interface. <i>Archives of Microbiology</i> , 1982 , 133, 257-260	3	91
15	Effect of interfaces on small, starved marine bacteria. <i>Applied and Environmental Microbiology</i> , 1982 , 43, 1166-72	4.8	162
14	Microbial Investigations of Surface Microlayers, Water Column, Ice and Sediment in the Arctic Ocean. <i>Marine Ecology - Progress Series</i> , 1982 , 9, 101-109	2.6	18
13	The hydrophobicity of bacteria - an important factor in their initial adhesion at the air-water interface. <i>Archives of Microbiology</i> , 1981 , 128, 267-70	3	158
12	QUANTITATIVE ANALYSIS OF BACTERIAL HYDROPHOBICITY STUDIED BY THE BINDING OF DODECANOIC ACID. FEMS Microbiology Letters, 1980 , 7, 41-44	2.9	55
11	Comparative study of different hydrophobic devices for sampling lipid surface films and adherent microorganisms. <i>Marine Biology</i> , 1979 , 53, 21-25	2.5	58
10	Distribution of lipolytic, proteolytic, and amylolytic marine bacteria between the lipid film and the subsurface water. <i>Marine Biology</i> , 1977 , 39, 103-109	2.5	22
9	Pseudomonas aeruginosa: A Model for Biofilm Formation215-253		8
8	Quorum-Sensing Inhibition393-416		6
7	Adaptive Responses of Vibrios133-155		10
6	Inhibition of algal spore germination by the marine bacterium Pseudoalteromonas tunicata		3
5	Nonculturability: adaptation or debilitation?		15
4	Cyclic-di-GMP is required for corneal infection byPseudomonas aeruginosaand modulates host immunity		1
3	The biofilm matrix scaffold of Pseudomonas species contains non-canonically base paired extracellular DNA and RNA		3
2	Isolation of a putative S-layer protein from anammox biofilm extracellular matrix using ionic liquid extra	ction	2

LIST OF PUBLICATIONS

Bioprospecting Novel Antifoulants and Anti-Biofilm Agents from Microbes405-412