L Harrington

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9226528/publications.pdf

Version: 2024-02-01

361296 330025 1,434 41 20 37 citations h-index g-index papers 43 43 43 2331 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Development of a Mortality Prediction Model in Hospitalised SARS-CoV-2 Positive Patients Based on Routine Kidney Biomarkers. International Journal of Molecular Sciences, 2022, 23, 7260.	1.8	2
2	Co-Incubation with PPARβ δ Agonists and Antagonists Modeled Using Computational Chemistry: Effect on LPS Induced Inflammatory Markers in Pulmonary Artery. International Journal of Molecular Sciences, 2021, 22, 3158.	1.8	3
3	DenResCov-19: A deep transfer learning network for robust automatic classification of COVID-19, pneumonia, and tuberculosis from X-rays. Computerized Medical Imaging and Graphics, 2021, 94, 102008.	3.5	50
4	Discovery of novel small molecule inhibitors of S100P with inÂvitro anti-metastatic effects on pancreatic cancer cells. European Journal of Medicinal Chemistry, 2020, 203, 112621.	2.6	18
5	Use of Machine Learning and Artificial Intelligence to predict SARS-CoV-2 infection from Full Blood Counts in a population. International Immunopharmacology, 2020, 86, 106705.	1.7	124
6	An overview of anti-diabetic plants used in Gabon: Pharmacology and toxicology. Journal of Ethnopharmacology, 2018, 216, 203-228.	2.0	21
7	Thyroid Hormone Receptor Antagonists: From Environmental Pollution to Novel Small Molecules. Vitamins and Hormones, 2018, 106, 147-162.	0.7	8
8	The Non-Genomic Effects of the PPAR $\hat{i}^2\hat{i}^3$ Agonist GW0742 on Streptozotocin Treated Rat Aorta. Current Molecular Pharmacology, 2018, 11, 149-154.	0.7	0
9	Evidence that diclofenac and celecoxib are thyroid hormone receptor beta antagonists. Life Sciences, 2016, 146, 66-72.	2.0	17
10	A New NO-Releasing Nanoformulation for the Treatment of Pulmonary Arterial Hypertension. Journal of Cardiovascular Translational Research, 2016, 9, 162-164.	1.1	20
11	In silico modelling of prostacyclin and other lipid mediators to nuclear receptors reveal novel thyroid hormone receptor antagonist properties. Prostaglandins and Other Lipid Mediators, 2016, 122, 18-27.	1.0	6
12	Methylglyoxal, A Metabolite Increased in Diabetes is Associated with Insulin Resistance, Vascular Dysfunction and Neuropathies. Current Drug Metabolism, 2016, 17, 359-367.	0.7	46
13	Reply to Letter Regarding Article, "Evidence That Links Loss of Cyclooxygenase-2 With Increased Asymmetric Dimethylarginine: Novel Explanation of Cardiovascular Side Effects Associated With Anti-Inflammatory Drugs― Circulation, 2015, 132, e213-4.	1.6	2
14	Evidence That Links Loss of Cyclooxygenase-2 With Increased Asymmetric Dimethylarginine. Circulation, 2015, 131, 633-642.	1.6	73
15	Linking Induction and Transrepression of PPARÎ 2 Î $^\circ$ with Cellular Function. Annual Research & Review in Biology, 2015, 6, 253-263.	0.4	3
16	Role of prostacyclin in pulmonary hypertension. Global Cardiology Science & Practice, 2014, 2014, 53.	0.3	55
17	Selective inhibition of NADPH oxidase reverses the over contraction of diabetic rat aorta. Redox Biology, 2014, 2, 61-64.	3.9	16
18	Harnessing the benefits of PPARÎ 2 Î $^\prime$ agonists. Life Sciences, 2013, 93, 963-967.	2.0	32

#	Article	IF	CITATIONS
19	Linking phospholipase C isoforms with differentiation function in human vascular smooth muscle cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3006-3012.	1.9	10
20	Crossâ€ŧalk between tollâ€ŀike receptor 4 (<scp>TLR</scp> 4) and proteinaseâ€activated receptor 2 (<scp>PAR</scp> ₂) is involved in vascular function. British Journal of Pharmacology, 2013, 168, 411-420.	2.7	20
21	Aspirinâ€triggered 15â€epiâ€lipoxin A ₄ predicts cyclooxygenaseâ€2 in the lungs of LPSâ€treated m but not in the circulation: implications for a clinical test. FASEB Journal, 2013, 27, 3938-3946.	ice 0.2	20
22	LC-MS/MS Confirms That COX-1 Drives Vascular Prostacyclin Whilst Gene Expression Pattern Reveals Non-Vascular Sites of COX-2 Expression. PLoS ONE, 2013, 8, e69524.	1.1	54
23	Nitric oxideâ€dependent vasodilation is compromised in isolated pulmonary arteries from COX knockout mice. FASEB Journal, 2013, 27, lb603.	0.2	1
24	Role of RhoB in the Regulation of Pulmonary Endothelial and Smooth Muscle Cell Responses to Hypoxia. Circulation Research, 2012, 110, 1423-1434.	2.0	77
25	Cyclooxygenase-1, not cyclooxygenase-2, is responsible for physiological production of prostacyclin in the cardiovascular system. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17597-17602.	3.3	105
26	Reduced endothelial dependent vasodilation in vessels from TLR4â^'/â^' mice is associated with increased superoxide generation. Biochemical and Biophysical Research Communications, 2011, 408, 511-515.	1.0	13
27	Role of Shear Stress in Endothelial Cell Morphology and Expression of Cyclooxygenase Isoforms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 384-391.	1.1	71
28	Nucleotide oligomerization domain 1 is a dominant pathway for NOS2 induction in vascular smooth muscle cells: comparison with Tollâ \in like receptor 4 responses in macrophages. British Journal of Pharmacology, 2010, 160, 1997-2007.	2.7	22
29	024â€Making anti-thrombotic bypass vessels from selected populations of vascular smooth muscle cells. Heart, 2010, 96, A16-A17.	1.2	0
30	The PPARÎ 2 $^\circ$ Agonist GW0742 Relaxes Pulmonary Vessels and Limits Right Heart Hypertrophy in Rats with Hypoxia-Induced Pulmonary Hypertension. PLoS ONE, 2010, 5, e9526.	1.1	43
31	Role of nitric oxide and prostacyclin as vasoactive hormones released by the endothelium. Experimental Physiology, 2008, 93, 141-147.	0.9	217
32	Evidence for a specific influence of the nitrergic pathway on the peripheral pulse waveform in rabbits. Experimental Physiology, 2008, 93, 503-512.	0.9	13
33	COXâ€1, and not COXâ€2 activity, regulates airway function: relevance to aspirinâ€sensitive asthma. FASEB Journal, 2008, 22, 4005-4010.	0.2	53
34	Purinergic 2X1 Receptors Mediate Endothelial Dependent Vasodilation to ATP. Molecular Pharmacology, 2007, 72, 1132-1136.	1.0	43
35	Elucidation of the temporal relationship between endothelial-derived NO and EDHF in mesenteric vessels. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H1682-H1688.	1.5	21
36	Homeostatic Role of Toll-like Receptor 4 in the Endothelium and Heart. Journal of Cardiovascular Pharmacology and Therapeutics, 2007, 12, 322-326.	1.0	17

#	Article	IF	CITATION
37	Pharmacology of airways and vessels in lung slices in situ: role of endogenous dilator hormones. Respiratory Research, 2006, 7, 111.	1.4	26
38	Novel role for P2X receptor activation in endothelium-dependent vasodilation. British Journal of Pharmacology, 2004, 143, 611-617.	2.7	45
39	Not so EEZE: the â€~EDHF' antagonist 14, 15 epoxyeicosa-5(Z)-enoic acid has vasodilator properties in mesenteric arteries. European Journal of Pharmacology, 2004, 506, 165-168.	1.7	15
40	Coordinate regulation of metabolic enzyme encoding genes during cardiac development and following carvedilol therapy in spontaneously hypertensive rats. Cardiovascular Drugs and Therapy, 2000, 14, 31-39.	1.3	31
41	Refined Genetic Mapping of the Darier Locus to a <1-cM Region of Chromosome 12q24.1, and Construction of a Complete, High-Resolution P1 Artificial Chromosome/Bacterial Artificial Chromosome Contig of the Critical Region. American Journal of Human Genetics, 1998, 62, 890-903.	2.6	20