Runming Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9225722/publications.pdf

Version: 2024-02-01

94433 95266 4,874 93 37 h-index citations papers

68 g-index 97 97 97 3437 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A theoretical adaptive model of thermal comfort – Adaptive Predicted MeanÂVoteÂ(aPMV). Building and Environment, 2009, 44, 2089-2096.	6.9	496
2	A method of formulating energy load profile for domestic buildings in the UK. Energy and Buildings, 2005, 37, 663-671.	6.7	391
3	A review of the performance of different ventilation and airflow distribution systems in buildings. Building and Environment, 2014, 73, 171-186.	6.9	363
4	Energy policy and standard for built environment in China. Renewable Energy, 2005, 30, 1973-1988.	8.9	198
5	Seasonal variation of thermal sensations in residential buildings in the Hot Summer and Cold Winter zone of China. Energy and Buildings, 2017, 140, 9-18.	6.7	196
6	Urbanisation and its impact on building energy consumption and efficiency in China. Renewable Energy, 2009, 34, 1994-1998.	8.9	182
7	Occupants' adaptive responses and perception of thermal environment in naturally conditioned university classrooms. Applied Energy, 2010, 87, 1015-1022.	10.1	168
8	The effect of passive measures on thermal comfort and energy conservation. A case study of the hot summer and cold winter climate in the Yangtze River region. Journal of Building Engineering, 2018, 15, 298-310.	3.4	115
9	Indoor thermal environments in Chinese residential buildings responding to the diversity of climates. Applied Thermal Engineering, 2018, 129, 693-708.	6.0	106
10	An introduction to the Chinese Evaluation Standard for the indoor thermal environment. Energy and Buildings, 2014, 82, 27-36.	6.7	99
11	A study of adaptive thermal comfort in a well-controlled climate chamber. Applied Thermal Engineering, 2015, 76, 283-291.	6.0	78
12	Modelling personal thermal sensations using C-Support Vector Classification (C-SVC) algorithm. Building and Environment, 2016, 99, 98-106.	6.9	76
13	A machine-learning-based approach to predict residential annual space heating and cooling loads considering occupant behaviour. Energy, 2020, 212, 118676.	8.8	74
14	A study of thermal comfort in residential buildings on the Tibetan Plateau, China. Building and Environment, 2017, 119, 71-86.	6.9	71
15	A method to weight three categories of adaptive thermal comfort. Energy and Buildings, 2012, 47, 312-320.	6.7	70
16	Assessing the natural ventilation cooling potential of office buildings in different climate zones in China. Renewable Energy, 2009, 34, 2697-2705.	8.9	69
17	Occupants' behavioural adaptation in workplaces with non-central heating and cooling systems. Applied Thermal Engineering, 2012, 35, 40-54.	6.0	69
18	A method of identifying and weighting indicators of energy efficiency assessment in Chinese residential buildings. Energy Policy, 2010, 38, 7687-7697.	8.8	67

#	Article	IF	Citations
19	A hierarchical climatic zoning method for energy efficient building design applied in the region with diverse climate characteristics. Energy and Buildings, 2019, 186, 355-367.	6.7	66
20	Modelling heating and cooling energy demand for building stock using a hybrid approach. Energy and Buildings, 2021, 235, 110740.	6.7	66
21	How do urban residents use energy for winter heating at home? A large-scale survey in the hot summer and cold winter climate zone in the Yangtze River region. Energy and Buildings, 2020, 223, 110131.	6.7	65
22	An investigation of the existing situation and trends in building energy efficiency management in China. Energy and Buildings, 2007, 39, 1098-1106.	6.7	64
23	Thermal adaptation of the elderly during summer in a hot humid area: Psychological, behavioral, and physiological responses. Energy and Buildings, 2019, 203, 109450.	6.7	63
24	Building energy efficiency for sustainable development in China: challenges and opportunities. Building Research and Information, 2012, 40, 417-431.	3.9	62
25	Evolution and performance analysis of adaptive thermal comfort models – A comprehensive literature review. Building and Environment, 2022, 217, 109020.	6.9	61
26	Developing urban residential reference buildings using clustering analysis of satellite images. Energy and Buildings, 2018, 169, 417-429.	6.7	58
27	A field study of urban microclimates in London. Renewable Energy, 2015, 73, 3-9.	8.9	55
28	A modified method of evaluating the impact of air humidity on human acceptable air temperatures in hot-humid environments. Energy and Buildings, 2018, 158, 393-405.	6.7	51
29	Experimental and numerical studies to assess the energy performance of naturally ventilated PV faÁ§ade systems. Solar Energy, 2017, 147, 37-51.	6.1	49
30	Low carbon heating and cooling of residential buildings in cities in the hot summer and cold winter zone - A bottom-up engineering stock modeling approach. Journal of Cleaner Production, 2019, 220, 271-288.	9.3	49
31	Field studies on the effect of built forms on urban wind environments. Renewable Energy, 2012, 46, 148-154.	8.9	43
32	Thermal comfort in hospital buildings – A literature review. Journal of Building Engineering, 2022, 45, 103463.	3.4	43
33	Indoor air quality and health in schools: A critical review for developing the roadmap for the future school environment. Journal of Building Engineering, 2022, 57, 104908.	3.4	43
34	An investigation of thermal comfort adaptation behaviour in office buildings in the UK. Indoor and Built Environment, 2014, 23, 675-691.	2.8	42
35	An analysis of UK policies for domestic energy reduction using an agent based tool. Energy Policy, 2014, 66, 267-279.	8.8	41
36	Effectiveness of the thermal mass of external walls on residential buildings for part-time part-space heating and cooling using the state-space method. Energy and Buildings, 2019, 190, 155-171.	6.7	40

#	Article	IF	CITATIONS
37	A generic model of Exergy Assessment for the Environmental Impact of Building Lifecycle. Energy and Buildings, 2010, 42, 1482-1490.	6.7	38
38	A simplified mathematical model for urban microclimate simulation. Building and Environment, 2011, 46, 253-265.	6.9	38
39	Natural ventilation potential for residential buildings in a densely built-up and highly polluted environment. A case study. Renewable Energy, 2019, 138, 340-353.	8.9	38
40	Emergy-based sustainability assessment of different energy options for green buildings. Energy Conversion and Management, 2015, 100, 97-102.	9.2	35
41	Assessing energy saving potentials of office buildings based on adaptive thermal comfort using a tracking-based method. Energy and Buildings, 2020, 208, 109611.	6.7	35
42	Quantification of personal thermal comfort with localized airflow system based on sensitivity analysis and classification tree model. Energy and Buildings, 2019, 194, 1-11.	6.7	34
43	Numerical and experimental studies of a Capillary-Tube embedded PCM component for improving indoor thermal environment. Applied Thermal Engineering, 2019, 148, 466-477.	6.0	34
44	Energy-quota-based integrated solutions for heating and cooling of residential buildings in the Hot Summer and Cold Winter zone in China. Energy and Buildings, 2021, 236, 110767.	6.7	34
45	An integrated study of urban microclimates in Chongqing, China: Historical weather data, transverse measurement and numerical simulation. Sustainable Cities and Society, 2015, 14, 187-199.	10.4	32
46	Energy flexibility for heating and cooling based on seasonal occupant thermal adaptation in mixed-mode residential buildings. Energy, 2019, 189, 116339.	8.8	32
47	Impact of neighbourhood-scale climate characteristics on building heating demand and night ventilation cooling potential. Renewable Energy, 2020, 150, 943-956.	8.9	28
48	A multidimensional model for green building assessment: A case study of a highest-rated project in Chongqing. Energy and Buildings, 2016, 125, 231-243.	6.7	27
49	Modification of the Predicted Heat Strain (PHS) model in predicting human thermal responses for Chinese workers in hot environments. Building and Environment, 2019, 165, 106349.	6.9	27
50	Exploring the $\hat{a}\in \infty$ black box $\hat{a}\in \infty$ of thermal adaptation using information entropy. Building and Environment, 2018, 146, 166-176.	6.9	26
51	Particle removal efficiency of a household portable air cleaner in real-world residences: A single-blind cross-over field study. Energy and Buildings, 2019, 203, 109464.	6.7	25
52	A simplified thermoregulation model of the human body in warm conditions. Applied Ergonomics, 2017, 59, 387-400.	3.1	24
53	A â€~heart rate'-based model (PHSHR) for predicting personal heat stress in dynamic working environments. Building and Environment, 2018, 135, 318-329.	6.9	24
54	Urban meteorological forcing data for building energy simulations. Building and Environment, 2021, 204, 108088.	6.9	23

#	Article	IF	Citations
55	Characterising the energy performance of centralised HVAC&R systems in the UK. Energy and Buildings, 2013, 62, 239-247.	6.7	22
56	Incorporating technology buying behaviour into UK-based long term domestic stock energy models to provide improved policy analysis. Energy Policy, 2013, 52, 363-372.	8.8	22
57	A systematic review of operating room ventilation. Journal of Building Engineering, 2021, 40, 102693.	3.4	22
58	Influence of human thermal adaptation and its development on human thermal responses to warm environments. Building and Environment, 2018, 139, 134-145.	6.9	20
59	An investigation of formaldehyde concentration in residences and the development of a model for the prediction of its emission rates. Building and Environment, 2019, 147, 540-550.	6.9	20
60	A holistic investigation into the seasonal and temporal variations of window opening behavior in residential buildings in Chongqing, China. Energy and Buildings, 2021, 231, 110522.	6.7	18
61	A preliminary study on post-occupancy evaluation of four office buildings in the UK based on the Analytic Hierarchy Process. Intelligent Buildings International, 2018, 10, 234-246.	2.3	17
62	A method of evaluating the accuracy of human body thermoregulation models. Building and Environment, 2015, 87, 1-9.	6.9	16
63	Moisture in clothing and its transient influence on human thermal responses through clothing microenvironment in cold environments in winter. Building and Environment, 2019, 150, 1-12.	6.9	16
64	A three-stage decision-making process for cost-effective passive solutions in office buildings in the hot summer and cold winter zone in China. Energy and Buildings, 2022, 268, 112173.	6.7	16
65	A fuzzy multiple attribute decision making tool for HVAC&R systems selection with considering the future probabilistic climate changes and electricity decarbonisation plans in the UK. Energy and Buildings, 2018, 159, 398-418.	6.7	15
66	An Epistemic-Deontic-Axiologic (EDA) agent-based energy management system in office buildings. Applied Energy, 2017, 205, 440-452.	10.1	14
67	Reducing particulates in indoor air can improve the circulation and cardiorespiratory health of old people: A randomized, double-blind crossover trial of air filtration. Science of the Total Environment, 2021, 798, 149248.	8.0	14
68	Reducing indoor relative humidity can improve the circulation and cardiorespiratory health of older people in a cold environment: A field trial conducted in Chongqing, China. Science of the Total Environment, 2022, 817, 152695.	8.0	14
69	A review of existing building benchmarks and the development of a set of reference office buildings for England and Wales. Intelligent Buildings International, 2014, 6, 41-64.	2.3	13
70	An object-oriented energy benchmark for the evaluation of the office building stock. Utilities Policy, 2018, 51, 1-11.	4.0	13
71	The development of energy conservation policy of buildings in China: A comprehensive review and analysis. Journal of Building Engineering, 2021, 38, 102229.	3.4	13
72	A holistic method to assess building energy efficiency combining D-S theory and the evidential reasoning approach. Energy Policy, 2012, 45, 277-285.	8.8	12

#	Article	IF	Citations
73	Evaluating the determinants of household electricity consumption using cluster analysis. Journal of Building Engineering, 2021, 43, 102487.	3.4	12
74	A model of intelligent building energy management for the indoor environment. Intelligent Buildings International, 2010, 2, 72-80.	2.3	11
75	Part load operation coefficient of air-conditioning system of public building. Energy and Buildings, 2010, 42, 1902-1907.	6.7	9
76	Decision-making on HVAC&R systems selection: a critical review. Intelligent Buildings International, 2018, 10, 133-153.	2.3	9
77	Regulation of sensory nerve conduction velocity of human bodies responding to annual temperature variations in natural environments. Indoor Air, 2019, 29, 308-319.	4.3	9
78	A multi-layer approach for estimating the energy use intensity on an urban scale. Cities, 2019, 95, 102467.	5.6	8
79	A spatial-and-temporal-based method for rapid particle concentration estimations in an urban environment. Journal of Cleaner Production, 2020, 256, 120331.	9.3	8
80	Overview of an innovative EU–China collaboration in education and research in sustainable built environment. Renewable Energy, 2009, 34, 2080-2087.	8.9	7
81	Performance evaluation of a building integrated photovoltaic (BIPV) system combined with a wastewater source heat pump (WWSHP) system. Energy Procedia, 2017, 140, 434-446.	1.8	7
82	Experimental studies on hot gas bypass defrosting control strategies for air source heat pumps. Journal of Building Engineering, 2021, 43, 103165.	3.4	7
83	Assessing stack ventilation strategies in the continental climate of Beijing using CFD simulations. International Journal of Ventilation, 2017, 16, 61-80.	0.4	6
84	A quick measurement method for determining the incidence angle modifier of flat plate solar collectors using spectroradiometer. Solar Energy, 2020, 201, 746-750.	6.1	6
85	A comparative field study of occupants' thermal exposure in non-heating and decentralized heating environments. Building and Environment, 2022, 207, 108501.	6.9	6
86	Exploiting a Hybrid Environmental Design Strategy in the Continental Climate of Beijing. International Journal of Ventilation, 2012, 11, 105-130.	0.4	4
87	The Impact of Urban Wind Environments on Natural Ventilation. International Journal of Ventilation, 2012, 11, 17-28.	0.4	4
88	Urban Microclimates and Simulation. , 2013, , 77-97.		4
89	Sustainability in the Built Environment. , 2013, , 1-22.		4
90	A method to identify individually physiological response differences to heat exposure using Comprehensive Deviation Coefficient (CDC). Energy and Buildings, 2020, 217, 110003.	6.7	3

#	Article	IF	CITATION
91	An Analytic Hierarchy Process Model for Assessing Occupants' Adaptations to Thermal Comfort in Offices. Smart Innovation, Systems and Technologies, 2011, , 25-34.	0.6	2
92	Developing new components for variable flow distribution system modelling in TRNSYS. Building Simulation, 2013, 6, 309-322.	5 . 6	1
93	Energy Efficient Building Design. , 2013, , 179-202.		1