Anat Epstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9225578/publications.pdf

Version: 2024-02-01

		218381	264894
58	1,893	26	42
papers	citations	h-index	g-index
61	61	61	3817
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Integrated (epi)-Genomic Analyses Identify Subgroup-Specific Therapeutic Targets in CNS Rhabdoid Tumors. Cancer Cell, 2016, 30, 891-908.	7.7	191
2	Placenta growth factor activates monocytes and correlates with sickle cell disease severity. Blood, 2003, 102, 1506-1514.	0.6	141
3	Tumor-Associated Macrophages in SHH Subgroup of Medulloblastomas. Clinical Cancer Research, 2015, 21, 1457-1465.	3.2	92
4	Novel cancer vaccine based on genes of <i>Salmonella</i> pathogenicity island 2. International Journal of Cancer, 2010, 126, 2622-2634.	2.3	80
5	Approaches to Treatment for Extraocular Retinoblastoma. Journal of Pediatric Hematology/Oncology, 2004, 26, 31-34.	0.3	76
6	CXCR4 increases <i>in-vivo</i> glioma perivascular invasion, and reduces radiation induced apoptosis: A genetic knockdown study. Oncotarget, 2016, 7, 83701-83719.	0.8	75
7	Ceramide Signaling in Fenretinide-induced Endothelial Cell Apoptosis. Journal of Biological Chemistry, 2002, 277, 49531-49537.	1.6	74
8	Bone Marrow Mesenchymal Stem Cells Provide an Alternate Pathway of Osteoclast Activation and Bone Destruction by Cancer Cells. Cancer Research, 2005, 65, 1129-1135.	0.4	73
9	Choroid plexus tumors; management, outcome, and association with the Li–Fraumeni syndrome: The Children's Hospital Los Angeles (CHLA) experience, 1991–2010. Pediatric Blood and Cancer, 2012, 58, 905-909.	0.8	72
10	Molecular subgroups of medulloblastoma identification using noninvasive magnetic resonance spectroscopy. Neuro-Oncology, 2016, 18, 126-131.	0.6	69
11	Disrupting LIN28 in atypical teratoid rhabdoid tumors reveals the importance of the mitogen activated protein kinase pathway as a therapeutic target. Oncotarget, 2015, 6, 3165-3177.	0.8	66
12	Endothelial apoptosis induced by inhibition of integrins $\hat{l}\pm\nu\hat{l}^2$ 3 and $\hat{l}\pm\nu\hat{l}^2$ 5 involves ceramide metabolic pathways. Blood, 2005, 105, 4353-4361.	0.6	59
13	Pediatric Brain Tumor Cell Lines. Journal of Cellular Biochemistry, 2015, 116, 218-224.	1.2	50
14	A novel tumor-promoting role for nuclear factor IA in glioblastomas is mediated through negative regulation of p53, p21, and PAI1. Neuro-Oncology, 2014, 16, 191-203.	0.6	47
15	Treatment of children with recurrent high grade gliomas with a bevacizumab containing regimen. Journal of Neuro-Oncology, 2011, 103, 673-680.	1.4	44
16	Highâ€dose chemotherapy and autologous hematopoietic progenitor cell rescue in children with recurrent medulloblastoma and supratentorial primitive neuroectodermal tumors. Cancer, 2009, 115, 2956-2963.	2.0	40
17	A retrospective analysis of recurrent intracranial ependymoma. Pediatric Blood and Cancer, 2014, 61, 1195-1201.	0.8	39
18	Novel Paracrine Modulation of Notch–DLL4 Signaling by Fibulin-3 Promotes Angiogenesis in High-Grade Gliomas. Cancer Research, 2014, 74, 5435-5448.	0.4	39

#	Article	IF	CITATIONS
19	Novel cell lines established from pediatric brain tumors. Journal of Neuro-Oncology, 2012, 107, 269-280.	1.4	38
20	Heparanase-Induced GEF-H1 Signaling Regulates the Cytoskeletal Dynamics of Brain Metastatic Breast Cancer Cells. Molecular Cancer Research, 2012, 10, 689-702.	1.5	37
21	Microdeletion del(22)(q12.2) encompassing the facial development-associated gene, MN1 (meningioma 1) in a child with Pierre-Robin sequence (including cleft palate) and neurofibromatosis 2 (NF2): a case report and review of the literature. BMC Medical Genetics, 2012, 13, 19.	2.1	37
22	Nuclear factor IA is expressed in astrocytomas and is associated with improved survival. Neuro-Oncology, 2010, 12, 122-132.	0.6	36
23	Induction of Intercellular Adhesion Molecule-1 on Human Brain Endothelial Cells by HIV-1 gp120: Role of CD4 and Chemokine Coreceptors. Laboratory Investigation, 2003, 83, 1787-1798.	1.7	32
24	Gliovascular and cytokine interactions modulate brain endothelial barrier in vitro. Journal of Neuroinflammation, 2011, 8, 162.	3.1	32
25	<i>PID1</i> (<i>NYGGF4</i>), a New Growth-Inhibitory Gene in Embryonal Brain Tumors and Gliomas. Clinical Cancer Research, 2014, 20, 827-836.	3.2	29
26	Characterization of Cbl-Nck and Nck-Pak1 Interactions in Myeloid Fcl³RII Signaling. Experimental Cell Research, 1998, 245, 330-342.	1.2	27
27	The Chromatin-Modifying Protein HMGA2 Promotes Atypical Teratoid/Rhabdoid Cell Tumorigenicity. Journal of Neuropathology and Experimental Neurology, 2015, 74, 177-185.	0.9	26
28	Inducing a mode of NK-resistance to suppression by stress and surgery: A potential approach based on low dose of poly l–C to reduce postoperative cancer metastasis. Brain, Behavior, and Immunity, 2007, 21, 395-408.	2.0	25
29	c-Abl mediates endothelial apoptosis induced by inhibition of integrins $\hat{l}\pm\nu\hat{l}^2$ 3 and $\hat{l}\pm\nu\hat{l}^2$ 5 and by disruption of actin. Blood, 2010, 115, 2709-2718.	0.6	25
30	Association of high microvessel $\hat{l}\pm v\hat{l}^23$ and low PTEN with poor outcome in stage 3 neuroblastoma: rationale for using first in class dual PI3K/BRD4 inhibitor, SF1126. Oncotarget, 2017, 8, 52193-52210.	0.8	24
31	Cbl functions downstream of Src kinases in FCÎ ³ RI signaling in primary human macrophages. Journal of Leukocyte Biology, 1999, 65, 523-534.	1.5	22
32	Wnt pathway in atypical teratoid rhabdoid tumors. Neuro-Oncology, 2015, 17, 526-535.	0.6	21
33	Successful Multimodality Therapy of Recurrent Multifocal Juvenile Granulosa Cell Tumor of the Ovary. Journal of Pediatric Hematology/Oncology, 2002, 24, 229-233.	0.3	20
34	Disseminated Medulloblastoma in a Child with Germline BRCA2 6174delT Mutation and without Fanconi Anemia. Frontiers in Oncology, 2015, 5, 191.	1.3	16
35	Re-irradiation of Recurrent Pineal Germ Cell Tumors with Radiosurgery: Report of Two Cases and Review of Literature. Cureus, 2016, 8, e585.	0.2	13
36	Protein Tyrosine Phosphatase Inhibitors in Fcl³RI-Induced Myeloid Oxidant Signaling. Experimental Cell Research, 1997, 237, 288-295.	1.2	12

#	Article	IF	Citations
37	<pre><scp>SMARCB1</scp> loss induces druggable cyclin <scp>D1</scp> deficiency via upregulation of <scp><i>MIR17HG</i></scp> in atypical teratoid rhabdoid tumors. Journal of Pathology, 2020, 252, 77-87.</pre>	2.1	11
38	Metabolism of Orthotopic Mouse Brain Tumor Models. Molecular Imaging, 2009, 8, 7290.2009.00019.	0.7	10
39	Differential Expression of Wnt Genes in Normal and Flat Variants of PC 12 Cells, a Cell Line Responsive to Ectopic Wnt1 Expression. Growth Factors, 1998, 15, 149-158.	0.5	9
40	PROGRESS IN THE TREATMENT OF CHILDHOOD BRAIN TUMORS: No Room for Complacency. Pediatric Hematology and Oncology, 2007, 24, 79-84.	0.3	9
41	GRK2 promotes growth of medulloblastoma cells and protects them from chemotherapy-induced apoptosis. Scientific Reports, 2019, 9, 13902.	1.6	9
42	Reciprocal Induction of MDM2 and MYCN in Neural and Neuroendocrine Cancers. Frontiers in Oncology, 2020, 10, 563156.	1.3	9
43	BarTeL, a Genetically Versatile, Bioluminescent and Granule Neuron Precursor-Targeted Mouse Model for Medulloblastoma. PLoS ONE, 2016, 11, e0156907.	1.1	7
44	Androgen inducibility of Fgf8 in Shionogi carcinoma 115 cells correlates with an adjacent t(5;19) translocation. Genes Chromosomes and Cancer, 2006, 45, 169-181.	1.5	5
45	PID1 increases chemotherapy-induced apoptosis in medulloblastoma and glioblastoma cells in a manner that involves NFήB. Scientific Reports, 2017, 7, 835.	1.6	5
46	c-Abl Is an Upstream Regulator of Acid Sphingomyelinase in Apoptosis Induced by Inhibition of Integrins $\hat{l}\pm v\hat{l}^2$ 3 and $\hat{l}\pm v\hat{l}^2$ 5. PLoS ONE, 2012, 7, e42291.	1.1	4
47	Continuous and bolus intraventricular topotecan prolong survival in a mouse model of leptomeningeal medulloblastoma. PLoS ONE, 2019, 14, e0206394.	1.1	4
48	<scp>WTâ€CLS1</scp> is a rhabdoid tumor cell line and can be inhibited by <scp>miR</scp> â€16. Cancer Reports, 2019, 2, .	0.6	3
49	Clinical utility of comprehensive genomic profiling in central nervous system tumors of children and young adults. Neuro-Oncology Advances, 2021, 3, vdab037.	0.4	3
50	Rare Pediatric Invasive Gliofibroma Has BRAFV600E Mutation and Transiently Responds to Targeted Therapy Before Progressive Clonal Evolution. JCO Precision Oncology, 2019, 3, 1-10.	1.5	2
51	Maximizing the potential of aggressive mouse tumor models in preclinical drug testing. Scientific Reports, 2021, 11, 11580.	1.6	2
52	PID1 IS A NOVEL SENSITIZER OF BRAIN TUMOR CELLS TO CHEMOTHERAPY. Neuro-Oncology, 2014, 16, iii26-iii26.	0.6	1
53	Phase 1 clinical trial of durvalumab in children with solid and central nervous system tumors Journal of Clinical Oncology, 2022, 40, 10029-10029.	0.8	1
54	CBMT-36. GRK2 PROMOTES MEDULLOBLASTOMA GROWTH AND SURVIVAL. Neuro-Oncology, 2018, 20, vi40-vi40.	0.6	0

#	Article	IF	CITATIONS
55	CSIG-29. STRUCTURAL AND FUNCTIONAL STUDIES OF PID1, A NOVEL GROWTH SUPPRESSOR IN BRAIN TUMORS. Neuro-Oncology, 2019, 21, vi50-vi50.	0.6	0
56	THER-05. CONTINUOUS AND BOLUS INTRAVENTRICULAR TOPOTECAN PROLONG SURVIVAL IN A MOUSE MODEL OF LEPTOMENINGEAL MEDULLOBLASTOMA. Neuro-Oncology, 2019, 21, ii115-ii115.	0.6	0
57	Abstract 462: The mutated chromatin modifier gene, H3F3AK27M, is a druggable target of DNA hypomethylating agents in pediatric high-grade glioma. , 2020, , .		O
58	ATRT-04. Clinical and (epi)genetic characterisation of patients with atypical teratoid/rhabdoid tumor (ATRT) and extracranial malignant rhabdoid tumor conceived following assisted reproduction technologies (ART). Neuro-Oncology, 2022, 24, i2-i2.	0.6	0