Po-Neng Chiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9225520/publications.pdf

Version: 2024-02-01

516710 477307 33 834 16 29 citations g-index h-index papers 34 34 34 1215 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High Rainfall Inhibited Soil Respiration in an Asian Monsoon Forest in Taiwan. Forests, 2021, 12, 239.	2.1	5
2	Carbon Dioxide Fluxes of a Young Deciduous Afforestation Under the Influence of Seasonal Precipitation Patterns and Frequent Typhoon Occurrence. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005996.	3.0	1
3	Soil Respiration Variation among Four Tree Species at Young Afforested Sites under the Influence of Frequent Typhoon Occurrences. Forests, 2021, 12, 787.	2.1	2
4	Seasonal and spatial variation in soil respiration in afforested sugarcane fields on Entisols, Taiwan. Geoderma Regional, 2021, 26, e00421.	2.1	0
5	Inhibitory effects and mechanisms of low-molecular-mass organic acids (LMMOAs) toward Cr(III) oxidation. Journal of Cleaner Production, 2021, 313, 127726.	9.3	2
6	Effects of long-term paddy rice cultivation on soil arsenic speciation. Journal of Environmental Management, 2020, 254, 109768.	7.8	14
7	Risk management in suburban forest recreation areas: A retrospective analysis of illness cases. Urban Forestry and Urban Greening, 2020, 53, 126710.	5.3	4
8	Preferential phosphate sorption and Al substitution on goethite. Environmental Science: Nano, 2020, 7, 3497-3508.	4.3	11
9	Evaluating relationships of standing stock, LAI and NDVI at a subtropical reforestation site in southern Taiwan using field and satellite data. Journal of Forest Research, 2020, 25, 250-259.	1.4	3
10	Use 3-D tomography to reveal structural modification of bentonite-enriched clay by nonionic surfactants: Application of organo-clay composites to detoxify aflatoxin B1 in chickens. Journal of Hazardous Materials, 2019, 375, 312-319.	12.4	16
11	Adsorption mechanisms of chromate and phosphate on hydrotalcite: A combination of macroscopic and spectroscopic studies. Environmental Pollution, 2019, 247, 180-187.	7.5	27
12	Reclamation of zinc-contaminated soil using a dissolved organic carbon solution prepared using liquid fertilizer from food-waste composting. Journal of Hazardous Materials, 2016, 301, 100-105.	12.4	35
13	The impacts of thinning on the fruiting of saprophytic fungi in Cryptomeria japonica plantations in central Taiwan. Forest Ecology and Management, 2015, 336, 183-193.	3.2	15
14	Low-Molecular-Weight Organic Acids Exuded by Millet (Setaria italica (L.) Beauv.) Roots and Their Effect on the Remediation of Cadmium-Contaminated Soil. Soil Science, 2011, 176, 33-38.	0.9	44
15	Effects of low molecular weight organic acids on 137Cs release from contaminated soils. Applied Radiation and Isotopes, 2011, 69, 844-851.	1.5	28
16	Cesium and strontium sorption by selected tropical and subtropical soils around nuclear facilities. Journal of Environmental Radioactivity, 2010, 101, 472-481.	1.7	35
17	Comparison and characterization of chemical surfactants and bio-surfactants intercalated with layered double hydroxides (LDHs) for removing naphthalene from contaminated aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 366, 170-177.	4.7	47
18	Mechanistic study of arsenate adsorption on lithium/aluminum layered double hydroxide. Applied Clay Science, 2010, 48, 485-491.	5.2	28

#	Article	IF	CITATIONS
19	Origin and Mineralogy of Sepiolite and Palygorskite From the Tuluanshan Formation, Eastern Taiwan. Clays and Clay Minerals, 2009, 57, 521-530.	1.3	7
20	Kinetics of radiocesium released from contaminated soil by fertilizer solutions. Journal of Environmental Radioactivity, 2008, 99, 159-166.	1.7	6
21	Integrated xylitol production by fermentation of hardwood wastes. Journal of Chemical Technology and Biotechnology, 2008, 83, 534-540.	3.2	34
22	Removal of 2-Chlorophenol from Aqueous Solution by Mg/Al Layered Double Hydroxide (LDH) and Modified LDH. Industrial & Description of the Modified LDH. Industri	3.7	111
23	Mineralogy and occurrence of glauconite in central Taiwan. Applied Clay Science, 2008, 42, 74-80.	5.2	15
24	SOIL ORGANIC MATTER AND SOIL PHYSICOCHEMICAL PROPERTIES ASSOCIATED WITH FOREST FIRES IN CENTRAL TAIWAN. Soil Science, 2008, 173, 768-778.	0.9	3
25	CLAY MINERALOGY AND MAJOR ELEMENT CHEMISTRY OF THE EARLY QUATERNARY AND LATE MIOCENE PALEOSOLS ON PENGHU ISLANDS (PESCADORES), TAIWAN. Soil Science, 2007, 172, 486-498.	0.9	4
26	p-Nitrophenol, phenol and aniline sorption by organo-clays. Journal of Hazardous Materials, 2007, 149, 275-282.	12.4	78
27	Arsenate Sorption on Lithium/Aluminum Layered Double Hydroxide Intercalated by Chloride and on Gibbsite:Â Sorption Isotherms, Envelopes, and Spectroscopic Studies. Environmental Science & Emp; Technology, 2006, 40, 7784-7789.	10.0	63
28	Chemical and physical properties of rhizosphere and bulk soils of three tea plants cultivated in Ultisols. Geoderma, 2006, 136, 378-387.	5.1	49
29	Sorption of chlorophenoxy propionic acids by organoclay complexes. Environmental Toxicology, 2006, 21, 71-79.	4.0	33
30	Effects of cadmium amendments on low-molecular-weight organic acid exudates in rhizosphere soils of tobacco and sunflower. Environmental Toxicology, 2006, 21, 479-488.	4.0	58
31	LOW-MOLECULAR-WEIGHT ORGANIC ACID EXUDATION OF RAPE (BRASSICA CAMPESTRIS) ROOTS IN CESIUM-CONTAMINATED SOILS. Soil Science, 2005, 170, 726-733.	0.9	17
32	Changes in the grassland-forest boundary at Ta-Ta-Chia long term ecological research (LTER) site detected by stable isotope ratios of soil organic matter. Chemosphere, 2004, 54, 217-224.	8.2	29
33	Characterization of wheat-rice-stone developed from porphyritic hornblende andesite. Applied Clay Science, 2003, 23, 337-346.	5. 2	10