Simone S Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9225331/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. Journal of the Royal Society Interface, 2007, 4, 999-1030.	1.5	969
2	Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials, 2006, 27, 6123-6137.	5.7	411
3	Biocompatible ionic liquids: fundamental behaviours and applications. Chemical Society Reviews, 2019, 48, 4317-4335.	18.7	280
4	Novel Genipin-Cross-Linked Chitosan/Silk Fibroin Sponges for Cartilage Engineering Strategies. Biomacromolecules, 2008, 9, 2764-2774.	2.6	240
5	lonic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chemistry, 2017, 19, 1208-1220.	4.6	190
6	Materials of marine origin: a review on polymers and ceramics of biomedical interest. International Materials Reviews, 2012, 57, 276-306.	9.4	173
7	Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter, 2012, 2, 278-289.	2.6	151
8	Plasma Surface Modification of Chitosan Membranes: Characterization and Preliminary Cell Response Studies. Macromolecular Bioscience, 2008, 8, 568-576.	2.1	131
9	Functional nanostructured chitosan–siloxane hybrids. Journal of Materials Chemistry, 2005, 15, 3952.	6.7	123
10	An investigation of the potential application of chitosan/aloe-based membranes for regenerative medicine. Acta Biomaterialia, 2013, 9, 6790-6797.	4.1	118
11	Green processing of porous chitin structures for biomedical applications combining ionic liquids and supercritical fluid technology. Acta Biomaterialia, 2011, 7, 1166-1172.	4.1	114
12	Physical properties and biocompatibility of chitosan/soy blended membranes. Journal of Materials Science: Materials in Medicine, 2005, 16, 575-579.	1.7	108
13	Morphology and miscibility of chitosan/soy protein blended membranes. Carbohydrate Polymers, 2007, 70, 25-31.	5.1	107
14	Potential applications of natural origin polymer-based systems in soft tissue regeneration. Critical Reviews in Biotechnology, 2010, 30, 200-221.	5.1	102
15	Effect of crosslinking in chitosan/aloe vera-based membranes for biomedical applications. Carbohydrate Polymers, 2013, 98, 581-588.	5.1	98
16	The use of ionic liquids in the processing of chitosan/silk hydrogels for biomedical applications. Green Chemistry, 2012, 14, 1463.	4.6	93
17	Silk hydrogels from non-mulberry and mulberry silkworm cocoons processed with ionic liquids. Acta Biomaterialia, 2013, 9, 8972-8982.	4.1	79
18	Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: Physicochemical characterization and assessment of rat bone marrow stromal cell viability. Journal of Biomedical Materials Research - Part A, 2009, 91A, 175-186.	2.1	73

SIMONE S SILVA

#	Article	IF	CITATIONS
19	Cell Adhesion and Proliferation onto Chitosan-based Membranes Treated by Plasma Surface Modification. Journal of Biomaterials Applications, 2011, 26, 101-116.	1.2	72
20	Genipinâ€Modified Silkâ€Fibroin Nanometric Nets. Macromolecular Bioscience, 2008, 8, 766-774.	2.1	71
21	Synthesis and characterization of polyurethane-g-chitosan. European Polymer Journal, 2003, 39, 1515-1519.	2.6	64
22	Fabrication and characterization of Eri silk fibers-based sponges for biomedical application. Acta Biomaterialia, 2016, 32, 178-189.	4.1	52
23	Unleashing the potential of supercritical fluids for polymer processing in tissue engineering and regenerative medicine. Journal of Supercritical Fluids, 2013, 79, 177-185.	1.6	48
24	Influence of freezing temperature and deacetylation degree on the performance of freeze-dried chitosan scaffolds towards cartilage tissue engineering. European Polymer Journal, 2017, 95, 232-240.	2.6	46
25	In vitro evaluation of the behaviour of human polymorphonuclear neutrophils in direct contact with chitosan-based membranes. Journal of Biotechnology, 2007, 132, 218-226.	1.9	45
26	Design and functionalization of chitin-based microsphere scaffolds. Green Chemistry, 2013, 15, 3252.	4.6	45
27	<i>In Vivo</i> Performance of Chitosan/Soy-Based Membranes as Wound-Dressing Devices for Acute Skin Wounds. Tissue Engineering - Part A, 2013, 19, 860-869.	1.6	42
28	Fucoidan Hydrogels Photo-Cross-Linked with Visible Radiation As Matrices for Cell Culture. ACS Biomaterials Science and Engineering, 2016, 2, 1151-1161.	2.6	41
29	Revealing the potential of squid chitosan-based structures for biomedical applications. Biomedical Materials (Bristol), 2013, 8, 045002.	1.7	38
30	In vivo study of dendronlike nanoparticles for stem cells "tune-up― from nano to tissues. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 914-924.	1.7	34
31	Bio-inspired Aloe vera sponges for biomedical applications. Carbohydrate Polymers, 2014, 112, 264-270.	5.1	33
32	2.11 Polymers of Biological Origin â~†. , 2017, , 228-252.		33
33	Chinese Oak Tasar Silkworm <i>Antheraea pernyi</i> Silk Proteins: Current Strategies and Future Perspectives for Biomedical Applications. Macromolecular Bioscience, 2019, 19, e1800252.	2.1	31
34	Marine collagen-chitosan-fucoidan cryogels as cell-laden biocomposites envisaging tissue engineering. Biomedical Materials (Bristol), 2020, 15, 055030.	1.7	31
35	Natural Polymers in tissue engineering applications. , 2008, , 145-192.		29
36	Alternative methodology for chitin–hydroxyapatite composites using ionic liquids and supercritical fluid technology. Journal of Bioactive and Compatible Polymers, 2013, 28, 481-491.	0.8	28

SIMONE S SILVA

#	Article	IF	CITATIONS
37	Physicochemical Characterization of Novel Chitosan-Soy Protein/ TEOS Porous Hybrids for Tissue Engineering Applications. Materials Science Forum, 2006, 514-516, 1000-1004.	0.3	24
38	Ionic liquids as foaming agents of semi-crystalline natural-based polymers. Green Chemistry, 2012, 14, 1949.	4.6	21
39	Toward Spinning Greener Advanced Silk Fibers by Feeding Silkworms with Nanomaterials. ACS Sustainable Chemistry and Engineering, 2020, 8, 11872-11887.	3.2	20
40	Marine-Derived Polymers in Ionic Liquids: Architectures Development and Biomedical Applications. Marine Drugs, 2020, 18, 346.	2.2	20
41	Natural Polymers in Tissue Engineering Applications. , 2013, , 385-425.		19
42	Exploring the Use of Choline Acetate on the Sustainable Development of α-Chitin-Based Sponges. ACS Sustainable Chemistry and Engineering, 2020, 8, 13507-13516.	3.2	16
43	Green Solvents Combined with Bioactive Compounds as Delivery Systems: Present Status and Future Trends. ACS Applied Bio Materials, 2021, 4, 4000-4013.	2.3	15
44	Challenges and opportunities on vegetable oils derived systems for biomedical applications. Materials Science and Engineering C, 2022, 134, 112720.	3.8	15
45	Green Pathway for Processing Non-mulberry Antheraea pernyi Silk Fibroin/Chitin-Based Sponges: Biophysical and Biochemical Characterization. Frontiers in Materials, 2020, 7, .	1.2	14
46	Chitosan Improves the Biological Performance of Soy-Based Biomaterials. Tissue Engineering - Part A, 2010, 16, 2883-2890.	1.6	13
47	Engineered tubular structures based on chitosan for tissue engineering applications. Journal of Biomaterials Applications, 2018, 32, 841-852.	1.2	12
48	lonic Liquid-Mediated Processing of SAIB-Chitin Scaffolds. ACS Sustainable Chemistry and Engineering, 2020, 8, 3986-3994.	3.2	12
49	Silk fibroin/cholinium gallate-based architectures as therapeutic tools. Acta Biomaterialia, 2022, 147, 168-184.	4.1	11
50	Dual delivery of hydrophilic and hydrophobic drugs from chitosan/diatomaceous earth composite membranes. Journal of Materials Science: Materials in Medicine, 2018, 29, 21.	1.7	10
51	Acemannan-based films: an improved approach envisioning biomedical applications. Materials Research Express, 2019, 6, 095406.	0.8	10
52	Hybrid biodegradable membranes of silane-treated chitosan/soy protein for biomedical applications. Journal of Bioactive and Compatible Polymers, 2013, 28, 385-397.	0.8	9
53	Approach on chitosan/virgin coconut oil-based emulsion matrices as a platform to design superabsorbent materials. Carbohydrate Polymers, 2020, 249, 116839.	5.1	9

54 Fundamentals on biopolymers and global demand. , 2020, , 3-34.

9

SIMONE S SILVA

#	Article	IF	CITATIONS
55	Innovative Technique for the Preparation of Porous Bilayer Hydroxyapatite/Chitosan Scaffolds for Osteochondral Applications. Key Engineering Materials, 2006, 309-311, 927-930.	0.4	8
56	Fucoidan Hydrogels Significantly Alleviate Oxidative Stress and Enhance the Endocrine Function of Encapsulated Beta Cells. Advanced Functional Materials, 2021, 31, 2011205.	7.8	8
57	An alternative approach to prepare alginate/acemannan 3D architectures. SN Applied Sciences, 2019, 1, 1.	1.5	7
58	Chitosan/β-TCP composites scaffolds coated with silk fibroin: a bone tissue engineering approach. Biomedical Materials (Bristol), 2022, 17, 015003.	1.7	7
59	Fabrication of biocompatible porous SAIB/silk fibroin scaffolds using ionic liquids. Materials Chemistry Frontiers, 2021, 5, 6582-6591.	3.2	6
60	Angiogenic potential of airbrushed fucoidan/polycaprolactone nanofibrous meshes. International Journal of Biological Macromolecules, 2021, 183, 695-706.	3.6	6
61	Tailoring Natural-Based Oleogels Combining Ethylcellulose and Virgin Coconut Oil. Polymers, 2022, 14, 2473.	2.0	6
62	Fucoidan-based hydrogels particles as versatile carriers for diabetes treatment strategies. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 1939-1954.	1.9	5
63	Photocrosslinked acemannan-based 3D matrices for <i>in vitro</i> cell culture. Journal of Materials Chemistry B, 2019, 7, 4184-4190.	2.9	4
64	Physicochemical features assessment of acemannan-based ternary blended films for biomedical purposes. Carbohydrate Polymers, 2021, 257, 117601.	5.1	3
65	Biopolymer membranes in tissue engineering. , 2020, , 141-163.		2
66	Sulfated Seaweed Polysaccharides. , 2022, , 307-340.		1
67	Biomedical exploitation of chitin and chitosan-based matrices via ionic liquid processing. , 2020, , 471-497.		0
68	Fucoidan Hydrogels Significantly Alleviate Oxidative Stress and Enhance the Endocrine Function of Encapsulated Beta Cells (Adv. Funct. Mater. 35/2021). Advanced Functional Materials, 2021, 31, 2170255.	7.8	0
69	Ionic Liquids as Tools in the Production of Smart Polymeric Hydrogels. RSC Smart Materials, 2017, , 304-318.	0.1	0
70	Chitin and Its Derivatives. , 2022, , 205-228.		0