
Moncef Mrabet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/922532/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Medicago truncatula in Interaction with Fusarium and Rhizoctonia Phytopathogenic Fungi: Fungal Aggressiveness, Plant Response Biodiversity and Character Heritability Indices. Plant Pathology Journal, 2021, 37, 315-328.	1.7	6
2	Biological control of Fusarium wilt caused by Fusarium equiseti in Vicia faba with broad spectrum antifungal plant-associated Bacillus spp Biological Control, 2021, 160, 104671.	3.0	23
3	Protists modulate Fusarium root rot suppression by beneficial bacteria. Applied Soil Ecology, 2021, 168, 104158.	4.3	12
4	Occurrence of fungal diseases in faba bean (Vicia faba L.) under salt and drought stress. European Journal of Plant Pathology, 2021, 159, 385-398.	1.7	13
5	Sinorhizobium spp inoculation alleviates the effect of Fusarium oxysporum on Medicago truncatula plants by increasing antioxidant capacity and sucrose accumulation. Applied Soil Ecology, 2020, 150, 103458.	4.3	4
6	The alternative oxidase pathway is involved in optimizing photosynthesis in <i>Medicago truncatula</i> infected by <i>Fusarium oxysporum</i> and <i>Rhizoctonia solani</i> . Physiologia Plantarum, 2020, 169, 600-611.	5.2	8
7	Potential of common bean (Phaseolus vulgaris L.) root microbiome in the biocontrol of root rot disease and traits of performance. Journal of Plant Diseases and Protection, 2020, 127, 453-462.	2.9	26
8	Diversity and geographic distribution of fungal strains infecting field-grown common bean (Phaseolus vulgaris L.) in Tunisia. European Journal of Plant Pathology, 2019, 153, 947-955.	1.7	8
9	Anti-fungal activity of bacterial endophytes associated with legumes against Fusarium solani: Assessment of fungi soil suppressiveness and plant protection induction. Applied Soil Ecology, 2018, 124, 131-140.	4.3	44
10	The bean rhizosphere Pseudomonas aeruginosa strain RZ9 strongly reduces Fusarium culmorum growth and infectiveness of plant roots. Spanish Journal of Agricultural Research, 2017, 15, e1003.	0.6	9
11	Phoma medicaginis colonizes Medicago truncatula root nodules and affects nitrogen fixation capacity. European Journal of Plant Pathology, 2015, 141, 375-383.	1.7	10
12	Cu-tolerantSinorhizobium melilotistrain is beneficial for growth, Cu accumulation, and mineral uptake of alfalfa plants grown in Cu excess. Archives of Agronomy and Soil Science, 2015, 61, 1707-1718.	2.6	3
13	Tunisian Rhizoctonia solani AG3 strains affect potato shoot macronutrients content, infect faba bean plants and show in vitro resistance to azoxystrobin. Australasian Plant Pathology, 2014, 43, 347-358.	1.0	27
14	Physiological responses to cadmium, copper, lead, and zinc of Sinorhizobium sp. strains nodulating Medicago sativa grown in Tunisian mining soils. Annals of Microbiology, 2012, 62, 1181-1188.	2.6	21
15	Salt tolerance of a Sinorhizobium meliloti strain isolated from dry lands: growth capacity and protein profile changes. Annals of Microbiology, 2011, 61, 361-369.	2.6	7
16	Agrobacterium strains isolated from root nodules of common bean specifically reduce nodulation by Rhizobium gallicum. FEMS Microbiology Ecology, 2006, 56, 304-309.	2.7	73
17	Salt-tolerant rhizobia isolated from a Tunisian oasis that are highly effective for symbiotic N2-fixation with Phaseolus vulgaris constitute a novel biovar (bv. mediterranense) of Sinorhizobium meliloti. Archives of Microbiology, 2006, 187, 79-85.	2.2	106
18	Competitiveness and symbiotic effectiveness of a R. gallicum strain isolated from root nodules of Phaseolus vulgaris. European Journal of Agronomy, 2005, 22, 209-216.	4.1	25

#	Article	IF	CITATIONS
19	Colonization of Phaseolus vulgaris nodules by Agrobacterium-like strains. Canadian Journal of Microbiology, 2005, 51, 105-111.	1.7	66