List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9224923/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant Journal, 2005, 44, 928-938.	5.7	572
2	Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO Journal, 2003, 22, 2004-2014.	7.8	512
3	Phytosiderophore Efflux Transporters Are Crucial for Iron Acquisition in Graminaceous Plants. Journal of Biological Chemistry, 2011, 286, 5446-5454.	3.4	473
4	The Arabidopsis HKT1 Gene Homolog Mediates Inward Na+ Currents in Xenopus laevis Oocytes and Na+ Uptake in Saccharomyces cerevisiae. Plant Physiology, 2000, 122, 1249-1260.	4.8	445
5	Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Letters, 2002, 531, 157-161.	2.8	336
6	Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends in Plant Science, 2006, 11, 372-374.	8.8	329
7	Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochemical Journal, 2009, 424, 439-448.	3.7	316
8	AtKUP1: An Arabidopsis Gene Encoding High-Affinity Potassium Transport Activity. Plant Cell, 1998, 10, 51-62.	6.6	314
9	Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6428-6433.	7.1	257
10	Potassium channels in plant cells. FEBS Journal, 2011, 278, 4293-4303.	4.7	232
11	Salicylic Acid Induces Extracellular Superoxide Generation Followed by an Increase in Cytosolic Calcium Ion in Tobacco Suspension Culture: The Earliest Events in Salicylic Acid Signal Transduction. Plant and Cell Physiology, 1998, 39, 721-730.	3.1	200
12	HKT transporters mediate salt stress resistance in plants: from structure and function to the field. Current Opinion in Biotechnology, 2015, 32, 113-120.	6.6	195
13	Sodium transport system in plant cells. Frontiers in Plant Science, 2013, 4, 410.	3.6	173
14	KtrAB and KtrCD: Two K ⁺ Uptake Systems in <i>Bacillus subtilis</i> and Their Role in Adaptation to Hypertonicity. Journal of Bacteriology, 2003, 185, 1289-1298.	2.2	167
15	A Rice Phenolic Efflux Transporter Is Essential for Solubilizing Precipitated Apoplasmic Iron in the Plant Stele. Journal of Biological Chemistry, 2011, 286, 24649-24655.	3.4	156
16	The jasmonate-responsive GTR1 transporter is required for gibberellin-mediated stamen development in Arabidopsis. Nature Communications, 2015, 6, 6095.	12.8	151
17	Pollen Tubes Lacking a Pair of K+ Transporters Fail to Target Ovules in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2011, 23, 81-93.	6.6	148
18	Multiple Genes, Tissue Specificity, and Expression-Dependent Modulation Contribute to the Functional Diversity of Potassium Channels in Arabidopsis thaliana. Plant Physiology, 1995, 109, 1093-1106.	4.8	145

#	Article	IF	CITATIONS
19	Evidence in support of a four transmembrane-pore-transmembrane topology model for the Arabidopsis thaliana Na+/K+ translocating AtHKT1 protein, a member of the superfamily of K+ transporters. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6488-6493.	7.1	131
20	Identification of Strong Modifications in Cation Selectivity in an Arabidopsis Inward Rectifying Potassium Channel by Mutant Selection in Yeast. Journal of Biological Chemistry, 1995, 270, 24276-24281.	3.4	102
21	Properties of Shaker-type Potassium Channels in Higher Plants. Journal of Membrane Biology, 2006, 210, 1-19.	2.1	98
22	Changes in physiology and protein abundance in salt-stressed wheat chloroplasts. Molecular Biology Reports, 2012, 39, 9059-9074.	2.3	93
23	Contribution of salicylic acid glucosyltransferase, OsSGT1, to chemically induced disease resistance in rice plants. Plant Journal, 2009, 57, 463-472.	5.7	90
24	Rice phenolics efflux transporter 2 (PEZ2) plays an important role in solubilizing apoplasmic iron. Soil Science and Plant Nutrition, 2011, 57, 803-812.	1.9	85
25	The Phytosiderophore Efflux Transporter TOM2 Is Involved in Metal Transport in Rice. Journal of Biological Chemistry, 2015, 290, 27688-27699.	3.4	83
26	Na+-dependent K+ Uptake Ktr System from the Cyanobacterium Synechocystis sp. PCC 6803 and Its Role in the Early Phases of Cell Adaptation to Hyperosmotic Shock. Journal of Biological Chemistry, 2004, 279, 54952-54962.	3.4	81
27	12-Hydroxyjasmonic Acid Clucoside Is a COI1-JAZ-Independent Activator of Leaf-Closing Movement in <i>Samanea saman</i> Â Â. Plant Physiology, 2011, 155, 1226-1236.	4.8	75
28	Plant-Specific Cation/H+ Exchanger 17 and Its Homologs Are Endomembrane K+ Transporters with Roles in Protein Sorting. Journal of Biological Chemistry, 2011, 286, 33931-33941.	3.4	74
29	Characterization of a Tobacco TPK-type K+ Channel as a Novel Tonoplast K+ Channel Using Yeast Tonoplasts. Journal of Biological Chemistry, 2008, 283, 1911-1920.	3.4	72
30	All Four Putative Selectivity Filter Glycine Residues in KtrB Are Essential for High Affinity and Selective K+ Uptake by the KtrAB System from Vibrio alginolyticus. Journal of Biological Chemistry, 2005, 280, 41146-41154.	3.4	71
31	Identification and Characterization of the Na+/H+ Antiporter NhaS3 from the Thylakoid Membrane of Synechocystis sp. PCC 6803. Journal of Biological Chemistry, 2009, 284, 16513-16521.	3.4	67
32	Contribution of hydrophobic and electrostatic interactions to the membrane integration of the Shaker K+ channel voltage sensor domain. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8263-8268.	7.1	64
33	Thylakoid potassium channel is required for efficient photosynthesis in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11043-11048.	7.1	64
34	The phosphoinositide PI(3,5)P2 mediates activation of mammalian but not plant TPC proteins: functional expression of endolysosomal channels in yeast and plant cells. Cellular and Molecular Life Sciences, 2014, 71, 4275-4283.	5.4	63
35	<i>N</i> â€myristoylation and <i>S</i> â€acylation are common modifications ofÂCa ²⁺ â€regulated <i>Arabidopsis</i> kinases and are required for activation of the SLAC1 anion channel. New Phytologist, 2018, 218, 1504-1521.	7.3	59
36	Calcium-Regulated Phosphorylation Systems Controlling Uptake and Balance of Plant Nutrients. Frontiers in Plant Science, 2020, 11, 44.	3.6	58

#	Article	IF	CITATIONS
37	Ion Channels in Plant Bioenergetic Organelles, Chloroplasts and Mitochondria: From Molecular Identification to Function. Molecular Plant, 2016, 9, 371-395.	8.3	57
38	Integration of Shaker-type K+ channel, KAT1, into the endoplasmic reticulum membrane: Synergistic insertion of voltage-sensing segments, S3-S4, and independent insertion of pore-forming segments, S5-P-S6. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 60-65.	7.1	56
39	Synchrony between flower opening and petal-color change from red to blue in morning glory, Ipomoea tricolor cv. Heavenly Blue. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2009, 85, 187-197.	3.8	51
40	Guard Cell Membrane Anion Transport Systems and Their Regulatory Components: An Elaborate Mechanism Controlling Stress-Induced Stomatal Closure. Plants, 2019, 8, 9.	3.5	51
41	Phosphorylation of the Inward-Rectifying Potassium Channel KAT1 by ABR Kinase in Vicia Guard Cells. Plant and Cell Physiology, 2000, 41, 850-856.	3.1	48
42	Phenylethylamine-Induced Generation of Reactive Oxygen Species and Ascorbate Free Radicals in Tobacco Suspension Culture: Mechanism for Oxidative Burst Mediating Ca2+ Influx. Plant and Cell Physiology, 2000, 41, 1259-1266.	3.1	45
43	Role of Positively Charged Amino Acids in the M2 _D Transmembrane Helix of Ktr/Trk/HKT Type Cation Transporters. Channels, 2007, 1, 161-171.	2.8	44
44	Fed-batch culture of hairy root using fructose as a carbon source. Journal of Bioscience and Bioengineering, 1991, 72, 457-460.	0.9	43
45	Aromatic Monoamine-Induced Immediate Oxidative Burst Leading to an Increase in Cytosolic Ca2+ Concentration in Tobacco Suspension Culture. Plant and Cell Physiology, 2000, 41, 1251-1258.	3.1	43
46	AtKUP/HAK/KT9, a K ⁺ Transporter from <i>Arabidopsis thaliana</i> , Mediates Cs ⁺ Uptake in <i>Escherichia coli</i> . Bioscience, Biotechnology and Biochemistry, 2010, 74, 203-205.	1.3	42
47	Evidence for potassium transport activity of Arabidopsis KEA1-KEA6. Scientific Reports, 2019, 9, 10040.	3.3	42
48	Application of image analysis with neural network for plant somatic embryo culture. Journal of Bioscience and Bioengineering, 1993, 76, 505-509.	0.9	41
49	<i>Escherichia coli</i> as an expression system for K ⁺ transport systems from plants. American Journal of Physiology - Cell Physiology, 2001, 281, C733-C739.	4.6	41
50	Comparative Analysis of <i>kdp</i> and <i>ktr</i> Mutants Reveals Distinct Roles of the Potassium Transporters in the Model Cyanobacterium Synechocystis sp. Strain PCC 6803. Journal of Bacteriology, 2015, 197, 676-687.	2.2	39
51	Iron deficiency regulated OsOPT7 is essential for iron homeostasis in rice. Plant Molecular Biology, 2015, 88, 165-176.	3.9	39
52	Defining membrane spanning domains and crucial membrane-localized acidic amino acid residues for K+ transport of a Kup/HAK/KT-type Escherichia coli potassium transporter. Journal of Biochemistry, 2014, 155, 315-323.	1.7	37
53	Production of artificial seed from horseradish hairy root. Journal of Bioscience and Bioengineering, 1992, 74, 21-26.	0.9	36
54	Identification and Characterization of Compounds that Affect Stomatal Movements. Plant and Cell Physiology, 2018, 59, 1568-1580.	3.1	34

#	Article	IF	CITATIONS
55	Production of plantlets for use as artificial seeds from horseradish hairy roots fragmented in a blender. Journal of Bioscience and Bioengineering, 1995, 79, 458-464.	0.9	33
56	The wheat chloroplastic proteome. Journal of Proteomics, 2013, 93, 326-342.	2.4	33
57	Molecular Dissection of the Contribution of Negatively and Positively Charged Residues in S2, S3, and S4 to the Final Membrane Topology of the Voltage Sensor in the K+ Channel, KAT1. Journal of Biological Chemistry, 2003, 278, 13227-13234.	3.4	32
58	Mechanosensitivity of GIRK Channels Is Mediated by Protein Kinase C-dependent Channel-Phosphatidylinositol 4,5-Bisphosphate Interaction. Journal of Biological Chemistry, 2004, 279, 7037-7047.	3.4	31
59	The consensus motif for Nâ€myristoylation of plant proteins in a wheat germ cellâ€free translation system. FEBS Journal, 2010, 277, 3596-3607.	4.7	31
60	GTR1 is a jasmonic acid and jasmonoyl- <scp>l</scp> -isoleucine transporter in <i>Arabidopsis thaliana</i> . Bioscience, Biotechnology and Biochemistry, 2017, 81, 249-255.	1.3	31
61	The Implication of YggT of <i>Escherichia coli</i> in Osmotic Regulation. Bioscience, Biotechnology and Biochemistry, 2009, 73, 2698-2704.	1.3	30
62	Measurement of the mechanical properties of single <i>Synechocystis</i> sp. strain PCC6803 cells in different osmotic concentrations using a robot-integrated microfluidic chip. Lab on A Chip, 2018, 18, 1241-1249.	6.0	28
63	Cesium Inhibits Plant Growth Primarily Through Reduction of Potassium Influx and Accumulation in Arabidopsis. Plant and Cell Physiology, 2019, 60, 63-76.	3.1	28
64	Structural and functional roles of cysteine residues of bacillus polymyxa .betaamylase. Biochemistry, 1991, 30, 4594-4599.	2.5	27
65	Excretion of peroxidase from horseradish hairy root in combination with ion supplementation. Applied Microbiology and Biotechnology, 1992, 37, 560.	3.6	27
66	Growth and kinetic parameters of ajuga hairy root in fedâ€batch culture on monosaccharide medium. Journal of Chemical Technology and Biotechnology, 1993, 57, 155-161.	3.2	26
67	Organelle-localized potassium transport systems in plants. Journal of Plant Physiology, 2014, 171, 743-747.	3.5	26
68	Modulation of the Arabidopsis KAT1 channel by an activator of protein kinase $\hat{e}_f C$ in <i>Xenopus</i> $\hat{e}_f aevis oocytes. FEBS Journal, 2010, 277, 2318-2328.$	4.7	25
69	20-Hydroxyecdysone production in Ajuga hairy root controlling intracellular phosphate content based on kinetic model. Journal of Bioscience and Bioengineering, 1995, 80, 362-368.	0.9	24
70	Optimal expression of GUS gene from methyl jasmonate-inducible promoter in high density culture of transformed tobacco cell line BY-2. Journal of Bioscience and Bioengineering, 1996, 82, 51-55.	0.9	24
71	Aquaporin AqpZ Is Involved in Cell Volume Regulation and Sensitivity to Osmotic Stress in Synechocystis sp. Strain PCC 6803. Journal of Bacteriology, 2012, 194, 6828-6836.	2.2	24
72	Towards an understanding of wheat chloroplasts: a methodical investigation of thylakoid proteome. Molecular Biology Reports, 2012, 39, 5069-5083.	2.3	24

#	Article	IF	CITATIONS
73	Reduction of Spermidine Content Resulting from Inactivation of Two Arginine Decarboxylases Increases Biofilm Formation in Synechocystis sp. Strain PCC 6803. Journal of Bacteriology, 2018, 200, .	2.2	24
74	Efficient regeneration from GUS-transformed Ajuga hairy root. Journal of Bioscience and Bioengineering, 1996, 81, 374-378.	0.9	23
75	Ktr-Mediated Potassium Transport, a Major Pathway for Potassium Uptake, Is Coupled to a Proton Gradient Across the Membrane inSynechocystissp. PCC 6803. Bioscience, Biotechnology and Biochemistry, 2006, 70, 273-275.	1.3	23
76	Plasma Membrane Aquaporin AqpZ Protein Is Essential for Glucose Metabolism during Photomixotrophic Growth of Synechocystis sp. PCC 6803. Journal of Biological Chemistry, 2011, 286, 25224-25235.	3.4	23
77	Ion Channels Regulate Nyctinastic Leaf Opening in Samanea saman. Current Biology, 2018, 28, 2230-2238.e7.	3.9	23
78	Cloning and sequencing of a gene encoding nitrite reductase from Paracoccus denitrificans and expression of the gene in Escherichia coli. Journal of Bioscience and Bioengineering, 1993, 76, 82-88.	0.9	22
79	A Cell-Free Translocation System Using Extracts of Cultured Insect Cells to Yield Functional Membrane Proteins. PLoS ONE, 2014, 9, e112874.	2.5	22
80	Stimulation of emergence of root apical meristems in horseradish hairy root by auxin supplementation and its kinetic model. Journal of Bioscience and Bioengineering, 1994, 77, 178-182.	0.9	21
81	Diverse Physiological Functions of Cation Proton Antiporters across Bacteria and Plant Cells. International Journal of Molecular Sciences, 2020, 21, 4566.	4.1	21
82	Enhancement of Peroxidase Production and Excretion from Horseradish Hairy Roots by Light, NaCl and Peroxidase-Adsorption in Situ Plant Tissue Culture Letters, 1991, 8, 158-165.	0.1	21
83	Characterization of the role of a mechanosensitive channel in osmotic down shock adaptation in <i>Synechocystis </i> sp PCC 6803. Channels, 2013, 7, 238-242.	2.8	20
84	Molecular Bases of Multimodal Regulation of a Fungal Transient Receptor Potential (TRP) Channel. Journal of Biological Chemistry, 2013, 288, 15303-15317.	3.4	19
85	Light activation of expression associated with the tomato rbcS promoter in transformed tobacco cell line BY-2. Journal of Biotechnology, 1994, 36, 55-62.	3.8	18
86	Topogenesis of Two Transmembrane Type K+ Channels, Kir 2.1 and KcsA. Journal of Biological Chemistry, 2003, 278, 40373-40384.	3.4	18
87	A Trk/HKT-Type K ⁺ Transporter from Trypanosoma brucei. Eukaryotic Cell, 2010, 9, 539-546.	3.4	18
88	Micropropagation of horseradish hairy root by means of adventitious shoot primordia. Plant Cell, Tissue and Organ Culture, 1994, 36, 183-190.	2.3	17
89	Production of Regenerated Plantlet using Shaking Vessel-Type Bioreactor Journal of Chemical Engineering of Japan, 1997, 30, 179-182.	0.6	17
90	Residue Aspartate-147 from the Third Transmembrane Region of Na + /H + Antiporter NhaB of Vibrio alginolyticus Plays a Role in Its Activity. Journal of Bacteriology, 2001, 183, 5762-5767.	2.2	17

#	Article	IF	CITATIONS
91	Large-Scale Production of Hairy Root. Advances in Biochemical Engineering/Biotechnology, 2004, 91, 75-103.	1.1	17
92	The KtrA and KtrE Subunits Are Required for Na ⁺ -Dependent K ⁺ Uptake by KtrB across the Plasma Membrane in <i>Synechocystis</i> sp. Strain PCC 6803. Journal of Bacteriology, 2010, 192, 5063-5070.	2.2	17
93	Salicylic Acid Induces a Cytosolic Ca2+Elevation in Yeast. Bioscience, Biotechnology and Biochemistry, 1998, 62, 986-989.	1.3	16
94	CLONING OF A cDNA ENCODING A 66-kDa Ca2+-DEPENDENT PROTEIN KINASE (CDPK) FROMDUNALIELLA TERTIOLECTA(CHLOROPHYTA). Journal of Phycology, 2000, 36, 545-552.	2.3	14
95	yam8+, a Schizosaccharomyces pombe Gene, Is a Potential Homologue of the Saccharomyces cerevisiae MID1 Gene Encoding a Stretch- Activated Ca2+-Permeable Channel. Biochemical and Biophysical Research Communications, 2000, 269, 265-269.	2.1	14
96	Involvement of Potassium Transport Systems in the Response of <i>Synechocystis</i> PCC 6803 Cyanobacteria to External pH Change, High-Intensity Light Stress and Heavy Metal Stress. Plant and Cell Physiology, 2016, 57, 862-877.	3.1	14
97	In vitro and in vivo characterization of modulation of the vacuolar cation channel TRPY 1 from Saccharomyces cerevisiae. FEBS Journal, 2018, 285, 1146-1161.	4.7	14
98	Efficient production of celery embryos and plantlets released in culture of immobilized gel beads. Journal of Bioscience and Bioengineering, 1995, 79, 585-588.	0.9	13
99	DAY-LENGTH-DEPENDENT DELAYED-GREENING1, the Arabidopsis Homolog of the Cyanobacterial H+-Extrusion Protein, Is Essential for Chloroplast pH Regulation and Optimization of Non-Photochemical Quenching. Plant and Cell Physiology, 2019, 60, 2660-2671.	3.1	13
100	Ion Channels and Plant Stress: Past, Present, and Future. Signaling and Communication in Plants, 2010, , 1-22.	0.7	12
101	Light Dependency in Celery Somatic Embryogenesis and Plantlet Development in Suspension Culture Plant Tissue Culture Letters, 1993, 10, 25-32.	0.1	11
102	Efficient culture method for production of plantlets from mechanically cut horseradish hairy roots. Journal of Bioscience and Bioengineering, 1996, 81, 87-89.	0.9	11
103	Kup-mediated Cs+ uptake and Kdp-driven K+ uptake coordinate to promote cell growth during excess Cs+ conditions in Escherichia coli. Scientific Reports, 2017, 7, 2122.	3.3	11
104	Evaluating Young's Modulus of Single Yeast Cells Based on Compression Using an Atomic Force Microscope with a Flat Tip. Microscopy and Microanalysis, 2021, 27, 392-399.	0.4	11
105	Application of Hairy Root and Bioreactors. , 1994, , 307-338.		10
106	The mechanosensitive channel YbdG from Escherichia coli has a role in adaptation to osmotic up-shock. Journal of Biological Chemistry, 2019, 294, 12281-12292.	3.4	9
107	Hik36–Hik43 and Rre6 act as a two-component regulatory system to control cell aggregation in Synechocystis sp. PCC6803. Scientific Reports, 2020, 10, 19405.	3.3	9
108	Mutation of His-157 in the Second Pore Loop Drastically Reduces the Activity of the Synechocystis Ktr-Type Transporter. Journal of Bacteriology, 2006, 188, 7985-7987.	2.2	8

#	Article	IF	CITATIONS
109	Electrophysiological Properties of NtTPK1 Expressed in Yeast Tonoplast. Bioscience, Biotechnology and Biochemistry, 2008, 72, 2785-2787.	1.3	8
110	Novel Treatment for Lithium-Induced Nephrogenic Diabetes Insipidus Rat Model Using the Sendai-Virus Vector Carrying Aquaporin 2 Gene. Endocrinology, 2008, 149, 5803-5810.	2.8	8
111	Purification of the functional plant membrane channel KAT1. Biochemical and Biophysical Research Communications, 2008, 374, 465-469.	2.1	7
112	Current Methods to Unravel the Functional Properties of Lysosomal Ion Channels and Transporters. Cells, 2022, 11, 921.	4.1	7
113	Molecular cloning of thermostable β-glucosidase gene from a thermophilic anaerobe NA10 and its high expression in Escherichia coli. Journal of Bioscience and Bioengineering, 1994, 77, 199-201.	0.9	6
114	Nerve growth factor enhances the CRE-dependent transcriptional activity activated by nobiletin in PC12 cells. Canadian Journal of Physiology and Pharmacology, 2016, 94, 728-733.	1.4	6
115	Dimerization of GTR1 regulates their plasma membrane localization. Plant Signaling and Behavior, 2017, 12, e1334749.	2.4	6
116	Development of Rotating-Mesh Basket Type Bioreactor for Carrot Embryo Production in Immobilized Callus System Journal of Chemical Engineering of Japan, 1998, 31, 613-617.	0.6	6
117	Addition of a Peptide Tag at the C Terminus of AtHKT1 Inhibits Its Na+Transport. Bioscience, Biotechnology and Biochemistry, 2003, 67, 2291-2293.	1.3	5
118	Probing native metal ion association sites through quenching of fluorophores in the nucleotide-binding domains of the ABC transporter MsbA. Biochemical Journal, 2017, 474, 1993-2007.	3.7	5
119	Analysis of Arabidopsis TPK2 and KCO3 reveals structural properties required for K ⁺ channel function. Channels, 2020, 14, 336-346.	2.8	5
120	Loss of cell wall integrity genes <i>cpxA</i> and <i>mrcB</i> causes flocculation in <i>Escherichia coli</i> . Biochemical Journal, 2021, 478, 41-59.	3.7	5
121	A simple fed-batch method for transcription and insect cell-free translation. Journal of Bioscience and Bioengineering, 2012, 114, 677-679.	2.2	4
122	Molecular cloning and expression analysis of a gene encoding KUP/HAK/KT-type potassium uptake transporter from Cryptomeria japonica. Trees - Structure and Function, 2014, 28, 1527-1537.	1.9	4
123	The topogenic function of S4 promotes membrane insertion of the voltage-sensor domain in the KvAP channel. Biochemical Journal, 2016, 473, 4361-4372.	3.7	4
124	Rice <i>amino acid transporterâ€likeÂ6</i> (<i>OsATL6</i>) is involved in amino acid homeostasis by modulating the vacuolar storage of glutamine in roots. Plant Journal, 2021, 107, 1616-1630.	5.7	4
125	Green Tea Catechins, (â^')â€Catechin Gallate, and (â^')â€Gallocatechin Gallate are Potent Inhibitors ofÂABAâ€Induced Stomatal Closure. Advanced Science, 2022, 9, e2201403.	11.2	4
126	Secretion of thermophilic bacterial cellobiohydrolase in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 1993, 75, 399-404.	0.9	3

#	ARTICLE	IF	CITATIONS
127	Membrane-bound heparin binding proteins from HL-60 cells purified in a two-step affinity chromatography differentially eluted with divalent cations. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 780, 1-12.	2.3	3
128	Regulatory Mechanism of Plant Nyctinastic Movement: An Ion Channel-Related Plant Behavior. , 2012, , 125-142.		3
129	12-Hydroxyjasmonic acid glucoside causes leaf-folding of Samanea saman through ROS accumulation. Scientific Reports, 2022, 12, 7232.	3.3	3
130	Requirement of Negative Residues, Asp 95 and Asp 105, in S2 on Membrane Integration of a Voltage-dependent K+Channel, KAT1. Bioscience, Biotechnology and Biochemistry, 2003, 67, 923-926.	1.3	2
131	Further application of a two-step heparin affinity chromatography method using divalent cations as eluents: Purification and identification of membrane-bound heparin binding proteins from the mitochondrial fraction of HL-60 cells. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2005. 823. 209-212.	2.3	2
132	Uniquely evolved plant ion channels. FEBS Journal, 2011, 278, 4261-4261.	4.7	2
133	Identification of regions responsible for the function of the plant K+ channels KAT1 and AKT2 in Saccharomyces cerevisiae and Xenopus laevis oocytes. Channels, 2017, 11, 510-516.	2.8	2
134	Isolation of Adenosine and Cordysinin B from Anredera cordifolia that Stimulates CRE-Mediated Transcription in PC12 Cells. Planta Medica International Open, 2021, 8, e19-e24.	0.5	2
135	Functional Roles of Active Site Residues of Bacillus polymyxa ?-Amylase. Annals of the New York Academy of Sciences, 1992, 672, 24-28.	3.8	2
136	Functional characterization of multiple PAS domain-containing diguanylate cyclases in Synechocystis sp. PCC 6803. Microbiology (United Kingdom), 2020, 166, 659-668.	1.8	2
137	Inducible production of recombinant xylose isomerase by Escherichia coli in fed-batch culture Journal of Chemical Engineering of Japan, 1992, 25, 702-708.	0.6	1
138	Functional Roles of Active Site Residues of Bacillus polymyxa ?-Amylase. Annals of the New York Academy of Sciences, 1992, 672, 24-28.	3.8	1
139	Mechanical characterization system of cyanobacteria using a robot integrated microdluidic chip. , 2015, , .		1
140	Plant Regeneration and Somatic Embryogenesis Frequency Using Callus Induced from Regenerated Celery Plant Kagaku Kogaku Ronbunshu, 1996, 22, 691-694.	0.3	0
141	Crystallization and preliminary X-ray analysis of β-amylase from Bacillus polymyxa. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 898-900.	2.5	Ο
142	Membrane Motive Force and Membrane Transport System in Plant Cells and Bacteria. Kagaku To Seibutsu, 2012, 50, 86-92.	0.0	0
143	Mechanical characterization of a single Synechocystis sp. PCC 6803. , 2015, , .		0
144	Limonene Enhances the cAMP Response Element (CRE)-Dependent Transcriptional Activity Activated via Adenosine A2 A Receptor in a Neural-Crest Derived Cell Line, PC-12. Planta Medica International Open, 2016, 3, e60-e62.	0.5	0

#	Article	IF	CITATIONS
145	Mechanical characterization of a single synechocystis sp. PCC 6803 cell in different osmolarity solutions. , 2017, , .		0
146	Mechanical Characterization of a Single Yeast Cell Using a Robot Integrated Microfluidic Chip. , 2018, ,		0
147	Characterization of Potassium Channels from Arabidopsis thaliana. , 2004, , 167-169.		0
148	Calibration process for the Young's modulus of a mechanically trapped microbead measured by atomic force microscopy. , 2019, , .		0