Hongda Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9224337/publications.pdf

Version: 2024-02-01

430442 414034 1,183 51 18 32 citations h-index g-index papers 53 53 53 1570 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Spatiotemporal Tracing of the Cellular Internalization Process of Rod-Shaped Nanostructures. ACS Nano, 2022, 16, 4059-4071.	7.3	12
2	Revealing the Cell Entry Dynamic Mechanism of Single Rabies Virus Particle. Chemical Research in Chinese Universities, 2022, 38, 838-842.	1.3	6
3	Spatiotemporal tracking of the transport of RNA nano-drugs: from transmembrane to intracellular delivery. Nanoscale, 2022, 14, 8919-8928.	2.8	1
4	Organization of Protein Tyrosine Kinase-7 on Cell Membranes Characterized by Aptamer Probe-Based STORM Imaging. Analytical Chemistry, 2021, 93, 936-945.	3.2	16
5	A multidrug-resistant P-glycoprotein assembly revealed by tariquidar-probe's super-resolution imaging. Nanoscale, 2021, 13, 16995-17002.	2.8	2
6	Membrane protein density determining membrane fusion revealed by dynamic fluorescence imaging. Talanta, 2021, 226, 122091.	2.9	3
7	Single-molecule Force Microscopy: A Powerful Tool for Studying the Mechanical Properties of Cell Membranes. Current Analytical Chemistry, 2021, 17, .	0.6	O
8	Conventional Molecular and Novel Structural Mechanistic Insights into Orderly Organelle Interactions. Chemical Research in Chinese Universities, 2021, 37, 829-839.	1.3	3
9	A DNA Molecular Robot that Autonomously Walks on the Cell Membrane to Drive Cell Motility. Angewandte Chemie, 2021, 133, 26291-26299.	1.6	7
10	A DNA Molecular Robot that Autonomously Walks on the Cell Membrane to Drive Cell Motility. Angewandte Chemie - International Edition, 2021, 60, 26087-26095.	7.2	46
11	Quantitatively mapping the interaction of HER2 and EGFR on cell membranes with peptide probes. Nanoscale, 2021, 13, 17629-17637.	2.8	4
12	Insight into the Different Channel Proteins of Human Red Blood Cell Membranes Revealed by Combined dSTORM and AFM Techniques. Analytical Chemistry, 2021, 93, 14113-14120.	3.2	5
13	Variation of Trop2 on non-small-cell lung cancer and normal cell membranes revealed by super-resolution fluorescence imaging. Talanta, 2020, 207, 120312.	2.9	6
14	Developing substrate-based small molecule fluorescent probes for super-resolution fluorescent imaging of various membrane transporters. Nanoscale Horizons, 2020, 5, 523-529.	4.1	11
15	Quantitatively Mapping the Assembly Pattern of EpCAM on Cell Membranes with Peptide Probes. Analytical Chemistry, 2020, 92, 1865-1873.	3.2	24
16	Probing the Proteomics Dark Regions by VAILase Cleavage at Aliphatic Amino Acids. Analytical Chemistry, 2020, 92, 2770-2777.	3.2	19
17	Turn-On Assay for HIV-1 Protease Inhibitor Selection. ACS Applied Bio Materials, 2020, 3, 7706-7711.	2.3	O
18	Application of an inhibitor-based probe to reveal the distribution of membrane PSMA in dSTORM imaging. Chemical Communications, 2020, 56, 13241-13244.	2.2	2

#	Article	IF	CITATIONS
19	Correlative dual-alternating-color photoswitching fluorescence imaging and AFM enable ultrastructural analyses of complex structures with nanoscale resolution. Nanoscale, 2020, 12, 17203-17212.	2.8	4
20	Development of small molecule inhibitor-based fluorescent probes for highly specific super-resolution imaging. Nanoscale, 2020, 12, 21591-21598.	2.8	13
21	Correlative dual-color dSTORM/AFM reveals protein clusters at the cytoplasmic side of human bronchial epithelium membranes. Nanoscale, 2020, 12, 9950-9957.	2.8	11
22	Entry Dynamics of Single Ebola Virus Revealed by Force Tracing. ACS Nano, 2020, 14, 7046-7054.	7.3	19
23	Mechanical force regulation of YAP by F-actin and GPCR revealed by super-resolution imaging. Nanoscale, 2020, 12, 2703-2714.	2.8	34
24	Aptamer AS1411 utilized for super-resolution imaging of nucleolin. Talanta, 2020, 217, 121037.	2.9	16
25	Structural Mechanism Analysis of Orderly and Efficient Vesicle Transport by High-Resolution Imaging and Fluorescence Tracking. Analytical Chemistry, 2020, 92, 6555-6563.	3.2	6
26	Mechanistic Insights into Trop2 Clustering on Lung Cancer Cell Membranes Revealed by Super-resolution Imaging. ACS Omega, 2020, 5, 32456-32465.	1.6	4
27	Super-resolution imaging of cancer-associated carbohydrates using aptamer probes. Nanoscale, 2019, 11, 14879-14886.	2.8	10
28	The structural characteristics of mononuclear-macrophage membrane observed by atomic force microscopy. Journal of Structural Biology, 2019, 206, 314-321.	1.3	5
29	Using an RNA aptamer probe for super-resolution imaging of native EGFR. Nanoscale Advances, 2019, 1, 291-298.	2.2	19
30	Identifying a Membrane-Type 2 Matrix Metalloproteinase-Targeting Peptide for Human Lung Cancer Detection and Targeting Chemotherapy with Functionalized Mesoporous Silica. ACS Applied Bio Materials, 2019, 2, 397-405.	2.3	6
31	Single glucose molecule transport process revealed by force tracing and molecular dynamics simulations. Nanoscale Horizons, 2018, 3, 517-524.	4.1	14
32	Aptamer-recognized carbohydrates on the cell membrane revealed by super-resolution microscopy. Nanoscale, 2018, 10, 7457-7464.	2.8	18
33	Mechanistic insights into GLUT1 activation and clustering revealed by super-resolution imaging. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7033-7038.	3.3	56
34	The Process of Wrapping Virus Revealed by a Force Tracing Technique and Simulations. Advanced Science, 2017, 4, 1600489.	5.6	24
35	Cell contact and pressure control of YAP localization and clustering revealed by super-resolution imaging. Nanoscale, 2017, 9, 16993-17003.	2.8	16
36	Variation in Carbohydrates between Cancer and Normal Cell Membranes Revealed by Superâ€Resolution Fluorescence Imaging. Advanced Science, 2016, 3, 1600270.	5.6	42

#	Article	IF	CITATIONS
37	Studying the dynamic mechanism of transporting a single drug carrier-polyamidoamine dendrimer through cell membranes by force tracing. Nanoscale, 2016, 8, 18027-18031.	2.8	15
38	Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging. Scientific Reports, 2016, 6, 30247.	1.6	17
39	Mechanistic insights into the distribution of carbohydrate clusters on cell membranes revealed by dSTORM imaging. Nanoscale, 2016, 8, 13611-13619.	2.8	11
40	Mechanistic insights into EGFR membrane clustering revealed by super-resolution imaging. Nanoscale, 2015, 7, 2511-2519.	2.8	78
41	Revealing the carbohydrate pattern on a cell surface by super-resolution imaging. Nanoscale, 2015, 7, 3373-3380.	2.8	29
42	Ultrafast Tracking of a Single Live Virion During the Invagination of a Cell Membrane. Small, 2015, 11, 2782-2788.	5.2	27
43	The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy. Chemical Society Reviews, 2015, 44, 3617-3638.	18.7	131
44	Studying the Nucleated Mammalian Cell Membrane by Single Molecule Approaches. PLoS ONE, 2014, 9, e91595.	1.1	31
45	Regulation of EGFR nanocluster formation by ionic protein-lipid interaction. Cell Research, 2014, 24, 959-976.	5.7	109
46	High resolution imaging of mitochondrial membranes by in situ atomic force microscopy. RSC Advances, 2013, 3, 708-712.	1.7	21
47	The Asymmetrical Structure of Golgi Apparatus Membranes Revealed by In situ Atomic Force Microscope. PLoS ONE, 2013, 8, e61596.	1.1	20
48	A graphene oxide based biosensor for microcystins detection by fluorescence resonance energy transfer. Biosensors and Bioelectronics, 2012, 38, 31-36.	5.3	51
49	Direct Evidence of Lipid Rafts by in situ Atomic Force Microscopy. Small, 2012, 8, 1243-1250.	5.2	65
50	Preparation of cell membranes for high resolution imaging by AFM. Ultramicroscopy, 2010, 110, 305-312.	0.8	46
51	Localization of Na ⁺ â^'K ⁺ ATPases in Quasi-Native Cell Membranes. Nano Letters, 2009, 9, 4489-4493.	4.5	47