Victor J Thannickal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9224319/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reactive oxygen species in cell signaling. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L1005-L1028.	1.3	2,258
2	The Myofibroblast. American Journal of Pathology, 2007, 170, 1807-1816.	1.9	1,782
3	Recent Developments in Myofibroblast Biology. American Journal of Pathology, 2012, 180, 1340-1355.	1.9	1,043
4	miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. Journal of Experimental Medicine, 2010, 207, 1589-1597.	4.2	822
5	NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nature Medicine, 2009, 15, 1077-1081.	15.2	741
6	Mechanisms of Pulmonary Fibrosis. Annual Review of Medicine, 2004, 55, 395-417.	5.0	640
7	Reversal of Persistent Fibrosis in Aging by Targeting Nox4-Nrf2 Redox Imbalance. Science Translational Medicine, 2014, 6, 231ra47.	5.8	553
8	Myofibroblast Differentiation by Transforming Growth Factor-ॆ1 Is Dependent on Cell Adhesion and Integrin Signaling via Focal Adhesion Kinase. Journal of Biological Chemistry, 2003, 278, 12384-12389.	1.6	547
9	Host Responses in Tissue Repair and Fibrosis. Annual Review of Pathology: Mechanisms of Disease, 2013, 8, 241-276.	9.6	508
10	miR-29 Is a Major Regulator of Genes Associated with Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 287-294.	1.4	422
11	Matrix Stiffness–Induced Myofibroblast Differentiation Is Mediated by Intrinsic Mechanotransduction. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 340-348.	1.4	411
12	Metformin reverses established lung fibrosis in a bleomycin model. Nature Medicine, 2018, 24, 1121-1127.	15.2	411
13	CCR2-Mediated Recruitment of Fibrocytes to the Alveolar Space after Fibrotic Injury. American Journal of Pathology, 2005, 166, 675-684.	1.9	403
14	Targeted Injury of Type II Alveolar Epithelial Cells Induces Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 254-263.	2.5	399
15	Activation of an H2O2-generating NADH Oxidase in Human Lung Fibroblasts by Transforming Growth Factor β1. Journal of Biological Chemistry, 1995, 270, 30334-30338.	1.6	395
16	Glycolytic Reprogramming in Myofibroblast Differentiation and Lung Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 1462-1474.	2.5	376
17	Inhibition of mechanosensitive signaling in myofibroblasts ameliorates experimental pulmonary fibrosis. Journal of Clinical Investigation, 2013, 123, 1096-1108.	3.9	360
18	Evolving Concepts of Apoptosis in Idiopathic Pulmonary Fibrosis. Proceedings of the American Thoracic Society, 2006, 3, 350-356.	3.5	310

#	Article	IF	CITATIONS
19	Developmental pathways in the pathogenesis of lung fibrosis. Molecular Aspects of Medicine, 2019, 65, 56-69.	2.7	284
20	Macrophage Akt1 Kinase-Mediated Mitophagy Modulates Apoptosis Resistance and Pulmonary Fibrosis. Immunity, 2016, 44, 582-596.	6.6	276
21	Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. Journal of Clinical Investigation, 2007, 117, 989-996.	3.9	272
22	An Official American Thoracic Society Workshop Report: Use of Animal Models for the Preclinical Assessment of Potential Therapies for Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 667-679.	1.4	267
23	Prostaglandin E2Inhibits Fibroblast to Myofibroblast Transition via E. Prostanoid Receptor 2 Signaling and Cyclic Adenosine Monophosphate Elevation. American Journal of Respiratory Cell and Molecular Biology, 2003, 29, 537-544.	1.4	262
24	Differential Protein Expression Profiling by iTRAQâ´'2DLCâ´'MS/MS of Lung Cancer Cells Undergoing Epithelial-Mesenchymal Transition Reveals a Migratory/Invasive Phenotype. Journal of Proteome Research, 2006, 5, 1143-1154.	1.8	258
25	Pyruvate Dehydrogenase Kinase 1 Participates in Macrophage Polarization via Regulating Glucose Metabolism. Journal of Immunology, 2015, 194, 6082-6089.	0.4	251
26	Idiopathic Interstitial Pneumonia. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 1054-1060.	2.5	241
27	Fibroblastic Foci in Usual Interstitial Pneumonia. American Journal of Respiratory and Critical Care Medicine, 2003, 167, 1410-1415.	2.5	235
28	Hydrogen peroxide is a diffusible paracrine signal for the induction of epithelial cell death by activated myofibroblasts. FASEB Journal, 2005, 19, 1-16.	0.2	234
29	Participation of miR-200 in Pulmonary Fibrosis. American Journal of Pathology, 2012, 180, 484-493.	1.9	232
30	What's in a name? That which we call IPF, by any other name would act the same. European Respiratory Journal, 2018, 51, 1800692.	3.1	226
31	Combinatorial activation of FAK and AKT by transforming growth factor-β1 confers an anoikis-resistant phenotype to myofibroblasts. Cellular Signalling, 2007, 19, 761-771.	1.7	220
32	Oxidases and peroxidases in cardiovascular and lung disease: New concepts in reactive oxygen species signaling. Free Radical Biology and Medicine, 2011, 51, 1271-1288.	1.3	218
33	Activation of the Pro-survival Phosphatidylinositol 3-Kinase/AKT Pathway by Transforming Growth Factor-β1 in Mesenchymal Cells Is Mediated by p38 MAPK-dependent Induction of an Autocrine Growth Factor. Journal of Biological Chemistry, 2004, 279, 1359-1367.	1.6	214
34	Altered DNA Methylation Profile in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 525-535.	2.5	200
35	Extracellular matrix in lung development, homeostasis and disease. Matrix Biology, 2018, 73, 77-104.	1.5	200

3

4.9 199

#	Article	IF	CITATIONS
37	Future Directions in Idiopathic Pulmonary Fibrosis Research. An NHLBI Workshop Report. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 214-222.	2.5	199
38	Airway Remodeling in Asthma. Frontiers in Medicine, 2020, 7, 191.	1.2	194
39	Fibrosis: ultimate and proximate causes. Journal of Clinical Investigation, 2014, 124, 4673-4677.	3.9	191
40	Peroxisome proliferator-activated receptor- \hat{I}^3 activation inhibits tumor progression in non-small-cell lung cancer. Oncogene, 2004, 23, 100-108.	2.6	190
41	Role of Nox4 and Nox2 in Hyperoxia-Induced Reactive Oxygen Species Generation and Migration of Human Lung Endothelial Cells. Antioxidants and Redox Signaling, 2009, 11, 747-764.	2.5	167
42	Pathogenetic mechanisms in usual interstitial pneumonia/idiopathic pulmonary fibrosis. Journal of Pathology, 2003, 201, 343-354.	2.1	166
43	Novel Mechanisms for the Antifibrotic Action of Nintedanib. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 51-59.	1.4	163
44	Blue Journal Conference. Aging and Susceptibility to Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 261-269.	2.5	149
45	The natural history of progressive fibrosing interstitial lung diseases. European Respiratory Journal, 2020, 55, 2000085.	3.1	148
46	The Monocarboxylate Transporter 4 Is Required for Glycolytic Reprogramming and Inflammatory Response in Macrophages. Journal of Biological Chemistry, 2015, 290, 46-55.	1.6	146
47	Serpine 1 induces alveolar type <scp>II</scp> cell senescence through activating p53â€p21â€Rb pathway in fibrotic lung disease. Aging Cell, 2017, 16, 1114-1124.	3.0	146
48	Rasâ€dependent and â€independent regulation of reactive oxygen species by mitogenic growth factors and TGFâ€Î²1. FASEB Journal, 2000, 14, 1741-1748.	0.2	143
49	miRâ€145 regulates myofibroblast differentiation and lung fibrosis. FASEB Journal, 2013, 27, 2382-2391.	0.2	143
50	Metabolic Reprogramming Is Required for Myofibroblast Contractility and Differentiation. Journal of Biological Chemistry, 2015, 290, 25427-25438.	1.6	140
51	A randomized trial of recombinant human granulocyte-macrophage colony stimulating factor for patients with acute lung injury*. Critical Care Medicine, 2012, 40, 90-97.	0.4	134
52	Endothelin-1 and Transforming Growth Factor-β1 Independently Induce Fibroblast Resistance to Apoptosis via AKT Activation. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 484-493.	1.4	133
53	Prostaglandin E ₂ induces fibroblast apoptosis by modulating multiple survival pathways. FASEB Journal, 2009, 23, 4317-4326.	0.2	132
54	Exosomal transfer of mitochondria from airway myeloid-derived regulatory cells to T cells. Redox Biology, 2018, 18, 54-64.	3.9	130

#	Article	IF	CITATIONS
55	NOX Enzymes and Pulmonary Disease. Antioxidants and Redox Signaling, 2009, 11, 2505-2516.	2.5	129
56	Integrin α4β1Regulates Migration across Basement Membranes by Lung Fibroblasts. American Journal of Respiratory and Critical Care Medicine, 2003, 168, 436-442.	2.5	128
57	Oxidative Stress in Pulmonary Fibrosis. , 2020, 10, 509-547.		127
58	Glutaminolysis is required for transforming growth factor-β1–induced myofibroblast differentiation and activation. Journal of Biological Chemistry, 2018, 293, 1218-1228.	1.6	126
59	Fgf10-Hippo Epithelial-Mesenchymal Crosstalk Maintains and Recruits Lung Basal Stem Cells. Developmental Cell, 2017, 43, 48-59.e5.	3.1	123
60	Azithromycin Blocks Neutrophil Recruitment inPseudomonasEndobronchial Infection. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 1331-1339.	2.5	121
61	miR-27a Regulates Inflammatory Response of Macrophages by Targeting IL-10. Journal of Immunology, 2014, 193, 327-334.	0.4	121
62	Histone deacetylase inhibition promotes fibroblast apoptosis and ameliorates pulmonary fibrosis in mice. European Respiratory Journal, 2014, 43, 1448-1458.	3.1	120
63	Reversible differentiation of myofibroblasts by MyoD. Experimental Cell Research, 2011, 317, 1914-1921.	1.2	119
64	Lung Cells from Neonates Show a Mesenchymal Stem Cell Phenotype. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 1158-1164.	2.5	118
65	Modulation of Prosurvival Signaling in Fibroblasts by a Protein Kinase Inhibitor Protects against Fibrotic Tissue Injury. American Journal of Pathology, 2005, 166, 367-375.	1.9	115
66	Epithelial-Mesenchymal Interactions in Pulmonary Fibrosis. Seminars in Respiratory and Critical Care Medicine, 2006, 27, 600-612.	0.8	109
67	Mechanosensing by the α6-integrin confers an invasive fibroblast phenotype and mediates lung fibrosis. Nature Communications, 2016, 7, 12564.	5.8	109
68	Histone Modifications in Senescence-Associated Resistance to Apoptosis by Oxidative Stress. Redox Biology, 2013, 1, 8-16.	3.9	106
69	SIRT3 diminishes inflammation and mitigates endotoxin-induced acute lung injury. JCI Insight, 2019, 4, .	2.3	105
70	Oxidative Modification of Nuclear Mitogen-activated Protein Kinase Phosphatase 1 Is Involved in Transforming Growth Factor β1-induced Expression of Plasminogen Activator Inhibitor 1 in Fibroblasts. Journal of Biological Chemistry, 2010, 285, 16239-16247.	1.6	98
71	Mechanistic links between aging and lung fibrosis. Biogerontology, 2013, 14, 609-615.	2.0	97
72	Matrix Remodeling in Pulmonary Fibrosis and Emphysema. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 751-760.	1.4	97

#	Article	IF	CITATIONS
73	Long noncoding RNA Malat1 regulates differential activation of macrophages and response to lung injury. JCI Insight, 2019, 4, .	2.3	97
74	Fgf10 Signaling in Lung Development, Homeostasis, Disease, and Repair After Injury. Frontiers in Genetics, 2018, 9, 418.	1.1	96
75	NADPH Oxidase 4 (Nox4) Suppresses Mitochondrial Biogenesis and Bioenergetics in Lung Fibroblasts via a Nuclear Factor Erythroid-derived 2-like 2 (Nrf2)-dependent Pathway. Journal of Biological Chemistry, 2017, 292, 3029-3038.	1.6	95
76	FGF10-FGFR2B Signaling Generates Basal Cells and Drives Alveolar Epithelial Regeneration by Bronchial Epithelial Stem Cells after Lung Injury. Stem Cell Reports, 2019, 12, 1041-1055.	2.3	94
77	Plasminogen Activation–Induced Pericellular Fibronectin Proteolysis Promotes Fibroblast Apoptosis. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 78-87.	1.4	93
78	Transforming Growth Factor β1 Induces αvβ3 Integrin Expression in Human Lung Fibroblasts via a β3 Integrin-, c-Src-, and p38 MAPK-dependent Pathway. Journal of Biological Chemistry, 2008, 283, 12898-12908.	1.6	92
79	Matrix Biology of Idiopathic Pulmonary Fibrosis. American Journal of Pathology, 2014, 184, 1643-1651.	1.9	91
80	Transforming Growth Factor-β1-induced Activation of the ERK Pathway/Activator Protein-1 in Human Lung Fibroblasts Requires the Autocrine Induction of Basic Fibroblast Growth Factor. Journal of Biological Chemistry, 2000, 275, 27650-27656.	1.6	90
81	Relaxin Regulates Myofibroblast Contractility and Protects against Lung Fibrosis. American Journal of Pathology, 2011, 179, 2751-2765.	1.9	90
82	Unique Lipid Signatures of Extracellular Vesicles from the Airways of Asthmatics. Scientific Reports, 2018, 8, 10340.	1.6	86
83	Oxygen in the Evolution of Complex Life and the Price We Pay. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 507-510.	1.4	85
84	NADPH Oxidases in Lung Health and Disease. Antioxidants and Redox Signaling, 2014, 20, 2838-2853.	2.5	84
85	Therapeutic Targeting of Src Kinase in Myofibroblast Differentiation and Pulmonary Fibrosis. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 87-95.	1.3	83
86	Wilms' tumor 1 (Wt1) regulates pleural mesothelial cell plasticity and transition into myofibroblasts in idiopathic pulmonary fibrosis. FASEB Journal, 2014, 28, 1122-1131.	0.2	80
87	miR-34a Inhibits Lung Fibrosis by Inducing Lung Fibroblast Senescence. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 168-178.	1.4	80
88	PAI-1 Regulation of TGF-β1–induced Alveolar Type II Cell Senescence, SASP Secretion, and SASP-mediated Activation of Alveolar Macrophages. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 319-330.	1.4	80
89	Caveolin-1 Deficiency Protects from Pulmonary Fibrosis by Modulating Epithelial Cell Senescence in Mice. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 28-36.	1.4	79
90	Mechanisms for the Resolution of Organ Fibrosis. Physiology, 2019, 34, 43-55.	1.6	78

#	Article	IF	CITATIONS
91	Tyrosine Phosphorylation Regulates H2O2Production in Lung Fibroblasts Stimulated by Transforming Growth Factor β1. Journal of Biological Chemistry, 1998, 273, 23611-23615.	1.6	77
92	Targeting NOX enzymes in pulmonary fibrosis. Cellular and Molecular Life Sciences, 2012, 69, 2365-2371.	2.4	76
93	Autoimmunity to Vimentin Is Associated with Outcomes of Patients with Idiopathic Pulmonary Fibrosis. Journal of Immunology, 2017, 199, 1596-1605.	0.4	76
94	Enhancement of Antitumor Immunity in Lung Cancer by Targeting Myeloid-Derived Suppressor Cell Pathways. Cancer Research, 2013, 73, 6609-6620.	0.4	75
95	Insulin-like Growth Factor-I Receptor Blockade Improves Outcome in Mouse Model of Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 212-219.	2.5	73
96	Mitochondrial Dysfunction in Pulmonary Fibrosis. Annals of the American Thoracic Society, 2017, 14, S383-S388.	1.5	72
97	Redox mechanisms in age-related lung fibrosis. Redox Biology, 2016, 9, 67-76.	3.9	71
98	Vimentin intermediate filament assembly regulates fibroblast invasion in fibrogenic lung injury. JCI Insight, 2019, 4, .	2.3	69
99	MicroRNA-27a-3p Is a Negative Regulator of Lung Fibrosis by Targeting Myofibroblast Differentiation. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 843-852.	1.4	68
100	Transforming growth factor β1 (TGFβ1)-induced CD44V6-NOX4 signaling in pathogenesis of idiopathic pulmonary fibrosis. Journal of Biological Chemistry, 2017, 292, 10490-10519.	1.6	68
101	Fibronectin on the Surface of Extracellular Vesicles Mediates Fibroblast Invasion. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 279-288.	1.4	68
102	Indoleamine 2,3-dioxygenase regulates anti-tumor immunity in lung cancer by metabolic reprogramming of immune cells in the tumor microenvironment. Oncotarget, 2016, 7, 75407-75424.	0.8	66
103	The Aging Lung and Idiopathic Pulmonary Fibrosis. American Journal of the Medical Sciences, 2019, 357, 384-389.	0.4	66
104	Epigenetic mechanisms regulate NADPH oxidase-4 expression in cellular senescence. Free Radical Biology and Medicine, 2015, 79, 197-205.	1.3	65
105	Oxidative Protein Cross-linking Reactions Involvingl-Tyrosine in Transforming Growth Factor-β1-stimulated Fibroblasts. Journal of Biological Chemistry, 2001, 276, 17437-17441.	1.6	64
106	Heme oxygenase-1-mediated autophagy protects against pulmonary endothelial cell death and development of emphysema in cadmium-treated mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L280-L292.	1.3	62
107	Toll-Like Receptor 4 Engagement Inhibits Adenosine 5′-Monophosphate-Activated Protein Kinase Activation through a High Mobility Group Box 1 Protein-Dependent Mechanism. Molecular Medicine, 2012, 18, 659-668.	1.9	61
108	Pleural Mesothelial Cell Differentiation and Invasion in Fibrogenic Lung Injury. American Journal of Pathology, 2013, 182, 1239-1247.	1.9	60

#	Article	IF	CITATIONS
109	The matricellular protein CCN1 enhances TGFâ€Î²1/SMAD3â€dependent profibrotic signaling in fibroblasts and contributes to fibrogenic responses to lung injury. FASEB Journal, 2016, 30, 2135-2150.	0.2	60
110	Citrullinated vimentin mediates development and progression of lung fibrosis. Science Translational Medicine, 2021, 13, .	5.8	60
111	Microbicidal Activity of Vascular Peroxidase 1 in Human Plasma via Generation of Hypochlorous Acid. Infection and Immunity, 2012, 80, 2528-2537.	1.0	59
112	Impaired Myofibroblast Dedifferentiation Contributes to Nonresolving Fibrosis in Aging. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 633-644.	1.4	58
113	Effects of the Protein Kinase Inhibitor, Imatinib Mesylate, on Epithelial/Mesenchymal Phenotypes: Implications for Treatment of Fibrotic Diseases. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 35-44.	1.3	56
114	New Insights into the Pathogenesis and Treatment of Idiopathic Pulmonary Fibrosis. Drugs, 2011, 71, 981-1001.	4.9	56
115	Upregulated Expression of Fibroblast Growth Factor (FGF) Receptors by Transforming Growth Factor-β1 (TGF-β1) Mediates Enhanced Mitogenic Responses to FGFs in Cultured Human Lung Fibroblasts. Biochemical and Biophysical Research Communications, 1998, 251, 437-441.	1.0	53
116	STAT4 Is a Critical Mediator of Early Innate Immune Responses against PulmonaryKlebsiellaInfection. Journal of Immunology, 2004, 173, 4075-4083.	0.4	53
117	Glutaminolysis Epigenetically Regulates Antiapoptotic Gene Expression in Idiopathic Pulmonary Fibrosis Fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 49-57.	1.4	53
118	Alveolar epithelial disintegrity in pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L185-L191.	1.3	52
119	Nuclear Factor–Erythroid-2–Related Factor 2 in Aging and Lung Fibrosis. American Journal of Pathology, 2016, 186, 1712-1723.	1.9	51
120	miR-34a promotes fibrosis in aged lungs by inducing alveolarepithelial dysfunctions. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L415-L424.	1.3	51
121	Histone Deacetylase Inhibition Downregulates Collagen 3A1 in Fibrotic Lung Fibroblasts. International Journal of Molecular Sciences, 2013, 14, 19605-19617.	1.8	50
122	Developmental Reprogramming in Mesenchymal Stromal Cells of Human Subjects with Idiopathic Pulmonary Fibrosis. Scientific Reports, 2016, 6, 37445.	1.6	46
123	Idiopathic Pulmonary Fibrosis. Treatments in Respiratory Medicine, 2006, 5, 325-342.	1.4	45
124	Caveolin-1 regulates dorsoventral patterning through direct interaction with β-catenin in zebrafish. Developmental Biology, 2010, 344, 210-223.	0.9	45
125	Negative Regulation of NADPH Oxidase 4 by Hydrogen Peroxide-inducible Clone 5 (Hic-5) Protein. Journal of Biological Chemistry, 2014, 289, 18270-18278.	1.6	45
126	A far-upstream AP-1/Smad binding box regulates human NOX4 promoter activation by transforming growth factor-β. Gene, 2014, 540, 62-67.	1.0	45

#	Article	IF	CITATIONS
127	Brd4-p300 inhibition downregulates Nox4 and accelerates lung fibrosis resolution in aged mice. JCI Insight, 2020, 5, .	2.3	45
128	Heritability of pulmonary function estimated from pedigree and whole-genome markers. Frontiers in Genetics, 2013, 4, 174.	1.1	44
129	Targeted Therapy for Idiopathic Pulmonary Fibrosis: Where To Now?. Drugs, 2016, 76, 291-300.	4.9	44
130	Transforming growth factor β1 (TGFβ1) regulates CD44V6 expression and activity through extracellular signal-regulated kinase (ERK)-induced EGR1 in pulmonary fibrogenic fibroblasts. Journal of Biological Chemistry, 2017, 292, 10465-10489.	1.6	42
131	3D pulmospheres serve as a personalized and predictive multicellular model for assessment of antifibrotic drugs. JCI Insight, 2017, 2, e91377.	2.3	42
132	SMAD-Independent Down-Regulation of Caveolin-1 by TGF-β: Effects on Proliferation and Survival of Myofibroblasts. PLoS ONE, 2015, 10, e0116995.	1.1	41
133	Hippo signaling promotes lung epithelial lineage commitment by curbing Fgf10 and β-catenin signaling. Development (Cambridge), 2019, 146, .	1.2	40
134	Metabolomics to Predict Antiviral Drug Efficacy in COVID-19. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 396-398.	1.4	40
135	Vascular peroxidase 1 catalyzes the formation of hypohalous acids: Characterization of its substrate specificity and enzymatic properties. Free Radical Biology and Medicine, 2012, 53, 1954-1959.	1.3	39
136	ATF4 Mediates Mitochondrial Unfolded Protein Response in Alveolar Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 478-489.	1.4	39
137	Idiopathic pulmonary fibrosis: emerging concepts on pharmacotherapy. Expert Opinion on Pharmacotherapy, 2004, 5, 1671-1686.	0.9	38
138	DNA methylation regulated gene expression in organ fibrosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2389-2397.	1.8	37
139	Role of fibroblast growth factor 23 and klotho cross talk in idiopathic pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L141-L154.	1.3	37
140	Protein Kinase Inhibitors in the Treatment of Pulmonary Fibrosis. Current Medicinal Chemistry, 2008, 15, 2632-2640.	1.2	36
141	NOX4 modulates macrophage phenotype and mitochondrial biogenesis in asbestosis. JCI Insight, 2019, 4,	2.3	36
142	Mechanisms of pulmonary fibrosis: role of activated myofibroblasts and NADPH oxidase. Fibrogenesis and Tissue Repair, 2012, 5, S23.	3.4	34
143	Systemic sclerosis-associated fibrosis. Current Opinion in Rheumatology, 2015, 27, 571-576.	2.0	33
144	Restoration of SIRT3 gene expression by airway delivery resolves age-associated persistent lung fibrosis in mice. Nature Aging, 2021, 1, 205-217.	5.3	32

9

#	Article	IF	CITATIONS
145	Vascular peroxidase-1 is rapidly secreted, circulates in plasma, and supports dityrosine cross-linking reactions. Free Radical Biology and Medicine, 2011, 51, 1445-1453.	1.3	31
146	Noninvasive Imaging of Experimental Lung Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 8-13.	1.4	31
147	Reversing Mechanoinductive DSP Expression by CRISPR/dCas9–mediated Epigenome Editing. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 599-609.	2.5	31
148	Aging, antagonistic pleiotropy and fibrotic disease. International Journal of Biochemistry and Cell Biology, 2010, 42, 1398-1400.	1.2	30
149	Oxidative Modifications of Protein Tyrosyl Residues Are Increased in Plasma of Human Subjects with Interstitial Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 861-868.	2.5	30
150	Epigenetic Regulation of Caveolin-1 Gene Expression in Lung Fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 50-61.	1.4	29
151	Low-dose cadmium exposure induces peribronchiolar fibrosis through site-specific phosphorylation of vimentin. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L80-L91.	1.3	28
152	Vitronectin Inhibits Efferocytosis through Interactions with Apoptotic Cells as well as with Macrophages. Journal of Immunology, 2013, 190, 2273-2281.	0.4	27
153	Targeting mechanosensitive MDM4 promotes lung fibrosis resolution in aged mice. Journal of Experimental Medicine, 2021, 218, .	4.2	25
154	Platelet-Derived Growth Factor–Induced p42/44 Mitogen-Activated Protein Kinase Activation and Cellular Growth Is Mediated by Reactive Oxygen Species in the Absence of TSC2/Tuberin. Cancer Research, 2005, 65, 10881-10890.	0.4	24
155	Update in Pulmonary Fibrosis 2018. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 292-300.	2.5	23
156	Nonresolving Fibrotic Disorders: Idiopathic Pulmonary Fibrosis as a Paradigm of Impaired Tissue Regeneration. American Journal of the Medical Sciences, 2011, 341, 431-434.	0.4	22
157	Focal adhesion kinase signaling determines the fate of lung epithelial cells in response to TGF-β. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L926-L935.	1.3	22
158	Regulation of fibroblast Fas expression by soluble and mechanical pro-fibrotic stimuli. Respiratory Research, 2018, 19, 91.	1.4	22
159	Mesenchymal stromal cell aging impairs the self-organizing capacity of lung alveolar epithelial stem cells. ELife, 2021, 10, .	2.8	22
160	Innovative approaches to the therapy of fibrosis. Current Opinion in Rheumatology, 2009, 21, 649-655.	2.0	21
161	Identification of an emphysema-associated genetic variant near TGFB2 with regulatory effects in lung fibroblasts. ELife, 2019, 8,	2.8	21
162	Elevated levels of NO are localized to distal airways in asthma. Free Radical Biology and Medicine, 2011, 50, 1679-1688.	1.3	20

#	Article	IF	CITATIONS
163	NADPH Oxidase Inhibition in Fibrotic Pathologies. Antioxidants and Redox Signaling, 2020, 33, 455-479.	2.5	20
164	CD38 Mediates Lung Fibrosis by Promoting Alveolar Epithelial Cell Aging. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 459-475.	2.5	20
165	Emerging drugs for idiopathic pulmonary fibrosis. Expert Opinion on Emerging Drugs, 2005, 10, 707-727.	1.0	19
166	Lactate, a Novel Trigger of Transforming Growth Factor-β Activation in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 701-703.	2.5	19
167	Attenuated heme oxygenase-1 responses predispose the elderly to pulmonary nontuberculous mycobacterial infections. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L928-L940.	1.3	19
168	Distal airway microbiome is associated with immunoregulatory myeloid cell responses in lung transplant recipients. Journal of Heart and Lung Transplantation, 2018, 37, 206-216.	0.3	16
169	Peroxidasin contributes to lung host defense by direct binding and killing of gram-negative bacteria. PLoS Pathogens, 2018, 14, e1007026.	2.1	16
170	Mesenchymal Cell Fate and Phenotypes in the Pathogenesis of Emphysema. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2009, 6, 201-210.	0.7	15
171	Cellular Senescence in Chronic Obstructive Pulmonary Disease: Multifaceted and Multifunctional. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 135-136.	1.4	15
172	Heme Oxygenase-1 Protects Corexit 9500A-Induced Respiratory Epithelial Injury across Species. PLoS ONE, 2015, 10, e0122275.	1.1	15
173	Divergent Regulation of Alveolar Type 2 Cell and Fibroblast Apoptosis by Plasminogen Activator Inhibitor 1 in Lung Fibrosis. American Journal of Pathology, 2021, 191, 1227-1239.	1.9	13
174	Challenges in Translating Preclinical Studies to Effective Drug Therapies in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 532-533.	2.5	12
175	Wnt/β-Catenin and Transforming Growth Factor-β Signaling in Pulmonary Fibrosis. A Case for Antagonistic Pleiotropy?. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 129-131.	2.5	12
176	The senescence-associated matricellular protein CCN1 in plasma of human subjects with idiopathic pulmonary fibrosis. Respiratory Medicine, 2020, 161, 105821.	1.3	12
177	AMPK activates Parkin independent autophagy and improves post sepsis immune defense against secondary bacterial lung infections. Scientific Reports, 2021, 11, 12387.	1.6	12
178	Bone Marrow-Derived Cells in the Pathogenesis of Lung Fibrosis. Current Respiratory Medicine Reviews, 2005, 1, 69-76.	0.1	11
179	Update in Diffuse Parenchymal Lung Disease 2008. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 439-444.	2.5	11
180	The code of non-coding RNAs in lung fibrosis. Cellular and Molecular Life Sciences, 2015, 72, 3507-3519.	2.4	11

#	Article	IF	CITATIONS
181	A bundled care approach to patients with idiopathic pulmonary fibrosis improves transplant-free survival. Respiratory Medicine, 2016, 115, 33-38.	1.3	11
182	Tristetraprolin Down-Regulation Contributes to Persistent TNF-Alpha Expression Induced by Cigarette Smoke Extract through a Post-Transcriptional Mechanism. PLoS ONE, 2016, 11, e0167451.	1.1	9
183	Modulation of H4K16Ac levels reduces pro-fibrotic gene expression and mitigates lung fibrosis in aged mice. Theranostics, 2022, 12, 530-541.	4.6	9
184	Therapeutic potential of an orally effective small molecule inhibitor of plasminogen activator inhibitor for asthma. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L328-L336.	1.3	8
185	Idiopathic pulmonary fibrosis: idiopathic no more?. Lancet Respiratory Medicine,the, 2018, 6, 84-85.	5.2	8
186	Oxidative cross-linking of fibronectin confers protease resistance and inhibits cellular migration. Science Signaling, 2020, 13, .	1.6	8
187	Extracellular Vesicle Mediated Tumor-Stromal Crosstalk Within an Engineered Lung Cancer Model. Frontiers in Oncology, 2021, 11, 654922.	1.3	8
188	Indoleamine 2, 3-Dioxygenase Promotes Aryl Hydrocarbon Receptor-Dependent Differentiation Of Regulatory B Cells in Lung Cancer. Frontiers in Immunology, 2021, 12, 747780.	2.2	8
189	Classification of Interstitial Pneumonias. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 141-142.	2.5	7
190	Idiopathic Interstitial Pneumonia: A Clinicopathological Perspective. Seminars in Respiratory and Critical Care Medicine, 2006, 27, 569-573.	0.8	7
191	Reply to: "NOX-4 is expressed in thickened pulmonary arteries in idiopathic pulmonary fibrosis". Nature Medicine, 2011, 17, 32-33.	15.2	7
192	Use of ECMO in the Management of Severe Acute Respiratory Distress Syndrome. ASAIO Journal, 2015, 61, 556-563.	0.9	7
193	Measures of Frailty in Chronic Lung Diseases. Annals of the American Thoracic Society, 2017, 14, 1266-1267.	1.5	7
194	Getting to the core of fibrosis: targeting redox imbalance in aging. Annals of Translational Medicine, 2016, 4, 93-93.	0.7	7
195	Exposure to cigarette smoke impacts myeloid-derived regulatory cell function and exacerbates airway hyper-responsiveness. Laboratory Investigation, 2014, 94, 1312-1325.	1.7	6
196	Idiopathic interstitial pneumonia or idiopathic interstitial pneumonitis: what'sÂin a name?. European Respiratory Journal, 2019, 53, 1801939.	3.1	6
197	Is personalized medicine a realistic goal in idiopathic pulmonary fibrosis?. Expert Review of Respiratory Medicine, 2018, 12, 441-443.	1.0	5
198	Integrated bioinformatics analysis identifies established and novel TGFβ1-regulated genes modulated by anti-fibrotic drugs. Scientific Reports, 2022, 12, 3080.	1.6	5

#	Article	IF	CITATIONS
199	Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Disease 2021. American Journal of Physiology - Lung Cellular and Molecular Physiology, 0, , .	1.3	5
200	NADPH Oxidases and Aging Models of Lung Fibrosis. Methods in Molecular Biology, 2019, 1982, 487-496.	0.4	4
201	BETting on Novel Treatments for Asthma: Bromodomain 4 Inhibitors. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 7-8.	1.4	4
202	Heme metabolism genes Downregulated in COPD Cachexia. Respiratory Research, 2020, 21, 100.	1.4	4
203	H2O2 Production by Myofibroblasts Is Dependent on Src Kinase(s) and Actin Cytoskeletal Regulation. Chest, 2001, 120, S32-S33.	0.4	3
204	Biological Insights from Clinical Trials and Networks. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 475-476.	2.5	2
205	Update in Diffuse Parenchymal Lung Disease 2011. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 24-29.	2.5	2
206	Extracorporeal Membrane Oxygenation for Acute Respiratory Failure in Adults: The Need for Pulmonary INTERMACS. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 1321-1322.	2.5	2
207	Cost of Hospitalization Among Patients With Idiopathic Pulmonary Fibrosis: Patterns and Predictors. Chest, 2016, 150, 469A.	0.4	2
208	Modeling Fibrosis in Three-Dimensional Organoids Reveals New Epithelial Restraints on Fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 556-557.	1.4	2
209	The Impact of Comorbidities on Idiopathic Pulmonary Fibrosis Outcomes. Chest, 2016, 150, 471A.	0.4	1
210	Ambulatory oxygen and quality of life in interstitial lung disease. Lancet Respiratory Medicine,the, 2018, 6, 730-731.	5.2	1
211	Pulmonary fibrosis: "idiopathic―is not "cryptogenic― European Respiratory Journal, 2019, 53, 1900400.	3.1	1
212	Myofibroblast Functions in Tissue and Fibrosis: An Introduction. Methods in Molecular Biology, 2021, 2299, 9-15.	0.4	1
213	Redox biology and therapeutics in chronic lung disease. Redox Biology, 2020, 33, 101579.	3.9	1
214	ENERGY SENSING PATHWAYS IN AGING AND CHRONIC LUNG DISEASE. Transactions of the American Clinical and Climatological Association, 2020, 131, 286-293.	0.9	1
215	Exposure to Cigarette Smoke Impacts Myeloid-Derived Regulatory Cell Function and Exacerbates Airway Hyper-Responsiveness. Journal of Allergy and Clinical Immunology, 2013, 131, AB61.	1.5	0
216	The Lung Likes the Little Fella miR-29. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 637-638.	1.4	0

#	Article	IF	CITATIONS
217	Adult Pulmonary Mesenchymal Progenitors. , 2018, , 337-337.		Ο
218	Remember Me? The Bone Marrow in Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 959-960.	2.5	0
219	Elixir of Youth: Lipid Signaling Chaperones Synthesized in the Liver. Developmental Cell, 2020, 53, 625-626.	3.1	Ο
220	Mitochondrial Uncoupling Proteinâ€2 and Fibroblast Senescence in Ageâ€Related Lung Fibrosis. FASEB Journal, 2019, 33, 543.6.	0.2	0