Jennifer Patterson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/922385/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiscale Characterization of the Mechanical Properties of Fibrin and Polyethylene Glycol (PEG) Hydrogels for Tissue Engineering Applications. Macromolecular Chemistry and Physics, 2022, 223, 2100366.	2.2	13
2	Human Microbiome and Disease. , 2021, , .		0
3	Chlorite oxidized oxyamylose differentially influences the microstructure of fibrin and self assembling peptide hydrogels as well as dental pulp stem cell behavior. Scientific Reports, 2021, 11, 5687.	3.3	8
4	3D bioprinting of molecularly engineered PEG-based hydrogels utilizing gelatin fragments. Biofabrication, 2021, 13, 045008.	7.1	26
5	High-Resolution Bioprinting of Recombinant Human Collagen Type III. Polymers, 2021, 13, 2973.	4.5	22
6	A Review of the Use of Microparticles for Cartilage Tissue Engineering. International Journal of Molecular Sciences, 2021, 22, 10292.	4.1	17
7	Advanced Methods for the Characterization of Supramolecular Hydrogels. Gels, 2021, 7, 158.	4.5	17
8	Towards Mimicking the Fetal Liver Niche: The Influence of Elasticity and Oxygen Tension on Hematopoietic Stem/Progenitor Cells Cultured in 3D Fibrin Hydrogels. International Journal of Molecular Sciences, 2020, 21, 6367.	4.1	10
9	Peptide-functionalized Biomaterials with Osteoinductive or Anti-biofilm Activity. , 2020, , 129-168.		Ο
10	Nanocarrier systems assembled from PEGylated hyperbranched poly(arylene oxindole). European Polymer Journal, 2019, 119, 247-259.	5.4	7
11	Engineered Three-Dimensional Microenvironments with Starch Nanocrystals as Cell-Instructive Materials. Biomacromolecules, 2019, 20, 3819-3830.	5.4	19
12	Robust scalable synthesis of a bis-urea derivative forming thixotropic and cytocompatible supramolecular hydrogels. Chemical Communications, 2019, 55, 7323-7326.	4.1	25
13	Gelatin microspheres releasing transforming growth factor drive in vitro chondrogenesis of human periosteum derived cells in micromass culture. Acta Biomaterialia, 2019, 90, 287-299.	8.3	41
14	Cytocompatible carbon nanotube reinforced polyethylene glycol composite hydrogels for tissue engineering. Materials Science and Engineering C, 2019, 98, 1133-1144.	7.3	41
15	Synthesis and peptide functionalization of hyperbranched poly(arylene oxindole) towards versatile biomaterials. Polymer Chemistry, 2018, 9, 2775-2784.	3.9	7
16	RGDâ€functionalized polyethylene glycol hydrogels support proliferation and <i>in vitro</i> chondrogenesis of human periosteumâ€derived cells. Journal of Biomedical Materials Research - Part A, 2018, 106, 33-42.	4.0	30
17	In Vitro Screening of Molecularly Engineered Polyethylene Glycol Hydrogels for Cartilage Tissue Engineering using Periosteum-Derived and ATDC5 Cells. International Journal of Molecular Sciences, 2018, 19, 3341.	4.1	11
18	Harnessing the Osteogenicity of <i>In Vitro</i> Stem Cell-Derived Mineralized Extracellular Matrix as 3D Biotemplate to Guide Bone Regeneration. Tissue Engineering - Part A, 2017, 23, 874-890.	3.1	13

Jennifer Patterson

#	Article	IF	CITATIONS
19	Initiating human articular chondrocyte re-differentiation in a 3D system after 2D expansion. Journal of Materials Science: Materials in Medicine, 2017, 28, 156.	3.6	15
20	The Human Cornea as a Model Tissue for Additive Biomanufacturing: A Review. Procedia CIRP, 2017, 65, 56-63.	1.9	23
21	Fibrin structural and diffusional analysis suggests that fibers are permeable to solute transport. Acta Biomaterialia, 2017, 47, 25-39.	8.3	23
22	Molecularly Engineered Polymer-Based Systems in Drug Delivery and Regenerative Medicine. Current Pharmaceutical Design, 2017, 23, 281-294.	1.9	20
23	Biomimetic Materials. , 2017, , 189-213.		0
24	Computational model-informed design and bioprinting of cell-patterned constructs for bone tissue engineering. Biofabrication, 2016, 8, 025009.	7.1	44
25	Skeletal tissue regeneration: where can hydrogels play a role?. International Orthopaedics, 2014, 38, 1861-1876.	1.9	42
26	SPARC-derived protease substrates to enhance the plasmin sensitivity of molecularly engineered PEG hydrogels. Biomaterials, 2011, 32, 1301-1310.	11.4	84
27	Imaging hydrogel implants in situ. , 2011, , 228-255.		1
28	Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP-1 and MMP-2. Biomaterials, 2010, 31, 7836-7845.	11.4	463
29	Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Biomaterials, 2010, 31, 6772-6781.	11.4	282
30	Biomimetic materials in tissue engineering. Materials Today, 2010, 13, 14-22.	14.2	251
31	<i>In Situ</i> Characterization of the Degradation of PLGA Microspheres in Hyaluronic Acid Hydrogels by Optical Coherence Tomography. IEEE Transactions on Medical Imaging, 2009, 28, 74-81.	8.9	24
32	In Vivo Imaging of Bone Regeneration Induced by Angiogenic and Osteoinductive Hydrogel Scaffolds. , 2006, , .		0
33	De novo amyloid proteins from designed combinatorial libraries. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 11211-11216	7.1	327