
Michael R Morris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9223817/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of the site of protonation in the low-energy decompositions of gas-phase peptide ions. Journal of the American Society for Mass Spectrometry, 1996, 7, 522-531.	1.2	166
2	Plasma Free Metanephrine Measurement Using Automated Online Solid-Phase Extraction HPLC–Tandem Mass Spectrometry. Clinical Chemistry, 2007, 53, 1684-1693.	1.5	132
3	Exhaled volatile organic compounds for phenotyping chronic obstructive pulmonary disease: a cross-sectional study. Respiratory Research, 2012, 13, 72.	1.4	80
4	A real time metabolomic profiling approach to detecting fish fraud using rapid evaporative ionisation mass spectrometry. Metabolomics, 2017, 13, 153.	1.4	80
5	Rapid Liquid Chromatography-Tandem Mass Spectrometry Method for Routine Analysis of Cyclosporin A Over an Extended Concentration Range. Clinical Chemistry, 2002, 48, 69-76.	1.5	73
6	ETD in a Traveling Wave Ion Guide at Tuned Z-Spray Ion Source Conditions Allows for Site-Specific Hydrogen/Deuterium Exchange Measurements. Journal of the American Society for Mass Spectrometry, 2011, 22, 1784-93.	1.2	72
7	Potential of electrospray mass spectrometry for quantifying glycohemoglobin. Clinical Chemistry, 1997, 43, 771-778.	1.5	69
8	Serum steroid profiling for Congenital Adrenal Hyperplasia using liquid chromatography–tandem mass spectrometry. Clinica Chimica Acta, 2010, 411, 222-228.	0.5	67
9	Site-Specific Analysis of Gas-Phase Hydrogen/Deuterium Exchange of Peptides and Proteins by Electron Transfer Dissociation. Analytical Chemistry, 2012, 84, 1931-1940.	3.2	61
10	Gas Phase Stability of Protein Ions in a Cyclic Ion Mobility Spectrometry Traveling Wave Device. Analytical Chemistry, 2019, 91, 7554-7561.	3.2	58
11	New High Resolution Ion Mobility Mass Spectrometer Capable of Measurements of Collision Cross Sections from 150 to 520 K. Analytical Chemistry, 2016, 88, 9469-9478.	3.2	52
12	Effects of Drift Gas on Collision Cross Sections of a Protein Standard in Linear Drift Tube and Traveling Wave Ion Mobility Mass Spectrometry. Analytical Chemistry, 2012, 84, 8524-8531.	3.2	47
13	Simultaneous and Rapid Analysis of Cyclosporin A and Creatinine in Finger Prick Blood Samples Using Liquid Chromatography Tandem Mass Spectrometry and Its Application in C2 Monitoring. Therapeutic Drug Monitoring, 2002, 24, 757-767.	1.0	46
14	UV photodissociation of trapped ions following ion mobility separation in a Q-ToF mass spectrometer. Analyst, The, 2014, 139, 6348-6351.	1.7	45
15	Simultaneous analysis of gamma-hydroxybutyric acid and its precursors in urine using liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2004, 1056, 83-90.	1.8	43
16	Probing the Conformational Diversity of Cancerâ€Associated Mutations in p53 with Ionâ€Mobility Mass Spectrometry. Angewandte Chemie - International Edition, 2013, 52, 4370-4374.	7.2	41
17	Evaluation of 3 Internal Standards for the Measurement of Cyclosporin by HPLC–Mass Spectrometry. Clinical Chemistry, 2005, 51, 1890-1893.	1.5	37
18	Intrinsic disorder in proteins: a challenge for (un)structural biology met by ion mobility–mass spectrometry. Biochemical Society Transactions, 2012, 40, 1021-1026.	1.6	36

MICHAEL R MORRIS

#	Article	IF	CITATIONS
19	Use of Ultraviolet Photodissociation Coupled with Ion Mobility Mass Spectrometry To Determine Structure and Sequence from Drift Time Selected Peptides and Proteins. Analytical Chemistry, 2016, 88, 9964-9971.	3.2	34
20	Multi-center evaluation of a commercial Kit for tacrolimus determination by LC/MS/MS. Clinical Biochemistry, 2010, 43, 910-920.	0.8	33
21	Investigation and optimization of parameters affecting the multiply charged ion yield in AP-MALDI MS. Methods, 2016, 104, 11-20.	1.9	31
22	Advancing Liquid Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Toward Ultrahigh-Throughput Analysis. Analytical Chemistry, 2020, 92, 2931-2936.	3.2	29
23	Characterization of a high-pressure quadrupole collision cell for low-energy collision-indneed dissociation. Journal of the American Society for Mass Spectrometry, 1994, 5, 1042-1063.	1.2	28
24	Mass spectra of doubly charged ions. Organic Mass Spectrometry, 1989, 24, 504-510.	1.3	22
25	Primary structural confirmation of components of the bacitracin complex. Biological Mass Spectrometry, 1994, 23, 61-70.	0.5	22
26	Confirmation of congenital adrenal hyperplasia by adrenal steroid profiling of filter paper dried blood samples using ultra-performance liquid chromatography-tandem mass spectrometry. Clinical Chemistry and Laboratory Medicine, 2011, 49, 677-84.	1.4	21
27	Speciation and milk adulteration analysis by rapid ambient liquid MALDI mass spectrometry profiling using machine learning. Scientific Reports, 2021, 11, 3305.	1.6	21
28	Method of Atmospheric Pressure Charge Stripping for Electrospray Ionization Mass Spectrometry and Its Application for the Analysis of Large Poly(Ethylene Glycol)s. Analytical Chemistry, 2014, 86, 9644-9652.	3.2	20
29	Liquid Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Adds Enhanced Functionalities to MALDI MS Profiling for Disease Diagnostics. ACS Omega, 2019, 4, 12759-12765.	1.6	16
30	Analysis of Bacitracin B using fast atom bombardment and tandem mass spectrometry. Biological Mass Spectrometry, 1993, 22, 712-720.	0.5	14
31	Electrospray Ionization Mass Spectrometric Analysis of the Globin Chains in Hemoglobin Heterozygotes Can Detect the Variants HbC, D, and E. Clinical Chemistry, 2008, 54, 1256-1257.	1.5	14
32	Low-energy ion/molecule products from collisions with ammonia. Rapid Communications in Mass Spectrometry, 1993, 7, 1136-1140.	0.7	13
33	Fragmentation mechanisms of protonated actinomycins and their use in structural determination of unknown analogues. Journal of Mass Spectrometry, 1995, 30, 1111-1125.	0.7	12
34	Protein identification using a nanoUHPLC-AP-MALDI MS/MS workflow with CID of multiply charged proteolytic peptides. International Journal of Mass Spectrometry, 2017, 416, 20-28.	0.7	12
35	Tandem Mass Spectrometry Using the Atmospheric Pressure Electron Capture Dissociation Ion Source. Analytical Chemistry, 2014, 86, 4439-4446.	3.2	10
36	Production and analysis of multiply charged negative ions by liquid atmospheric pressure matrixâ€assisted laser desorption/ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2021, 35, e8246.	0.7	9

#	Article	IF	CITATIONS
37	LAP-MALDI MS coupled with machine learning: an ambient mass spectrometry approach for high-throughput diagnostics. Chemical Science, 2022, 13, 1746-1758.	3.7	9
38	Electron ionization-tandem mass spectrometry of glycosphingolipids. Part II. The identification of a carbohydrate sequence corresponding to a novel repetitive blood group a heptaglycosylceramide. Rapid Communications in Mass Spectrometry, 1993, 7, 421-426.	0.7	7
39	Biological mass spectrometry. TrAC - Trends in Analytical Chemistry, 1993, 12, VI-VII.	5.8	Ο