Susana FernÃ;ndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9223417/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of CuO nanoporous material as a highly efficient optoelectronic device. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	14
2	Transport Mechanisms and Dielectric Features of Mg-Doped ZnO Nanocrystals for Device Applications. Materials, 2022, 15, 2265.	2.9	16
3	Promising Cr-Doped ZnO Nanorods for Photocatalytic Degradation Facing Pollution. Applied Sciences (Switzerland), 2022, 12, 34.	2.5	14
4	Sputtered Ultrathin TiO2 as Electron Transport Layer in Silicon Heterojunction Solar Cell Technology. Nanomaterials, 2022, 12, 2441.	4.1	4
5	Non-treated low temperature indium tin oxide fabricated in oxygen-free environment to low-cost silicon-based solar technology. Vacuum, 2021, 184, 109783.	3.5	3
6	Graphene-Based Electrodes for Silicon Heterojunction Solar Cell Technology. Materials, 2021, 14, 4833.	2.9	10
7	Further Increasing the Accuracy of Characterization of a Thin Dielectric or Semiconductor Film on a Substrate from Its Interference Transmittance Spectrum. Materials, 2021, 14, 4681.	2.9	5
8	Evaluation of Cd _{1–x} Zn _x S as electron transport layer in superstrate and inverted configurations of Sb ₂ Se ₃ solar cells with n-i-p structure. Semiconductor Science and Technology, 2021, 36, 015016.	2.0	9
9	Optical Characterization of H-Free a-Si Layers Grown by rf-Magnetron Sputtering by Inverse Synthesis Using Matlab: Tauc–Lorentz–Urbach Parameterization. Coatings, 2021, 11, 1324.	2.6	9
10	Sputtered Non-Hydrogenated Amorphous Silicon as Alternative Absorber for Silicon Photovoltaic Technology. Materials, 2021, 14, 6550.	2.9	3
11	Roles of Low Temperature Sputtered Indium Tin Oxide for Solar Photovoltaic Technology. Materials, 2021, 14, 7758.	2.9	3
12	Graphene-Based Contacts for Optoelectronic Devices. Micromachines, 2020, 11, 919.	2.9	11
13	III-Nitrides Resonant Cavity Photodetector Devices. Materials, 2020, 13, 4428.	2.9	4
14	Studies of optical properties of ZnO:MgO thin films fabricated by sputtering from home-made stable oversize targets. Optik, 2020, 216, 164934.	2.9	19
15	Processing and Study of Optical and Electrical Properties of (Mg, Al) Co-Doped ZnO Thin Films Prepared by RF Magnetron Sputtering for Photovoltaic Application. Materials, 2020, 13, 2146.	2.9	13
16	Advanced Graphene-Based Transparent Conductive Electrodes for Photovoltaic Applications. Micromachines, 2019, 10, 402.	2.9	15
17	The influence of Ar pressure on the structure and optical properties of non-hydrogenated a-Si thin films grown by rf magnetron sputtering onto room-temperature glass substrates. Journal of Non-Crystalline Solids, 2019, 517, 32-43.	3.1	22
18	Photon-collection improvement from laser-textured AZO front-contact in thin-film solar cells. Applied Surface Science, 2019, 463, 775-780.	6.1	6

Susana FernÃindez

#	Article	IF	CITATIONS
19	Tailored amorphous ITAZO transparent conductive electrodes. Materials Science in Semiconductor Processing, 2019, 90, 252-258.	4.0	9
20	ITO-Based Selective Contacts for Silicon Solar Devices. , 2018, , .		0
21	Amorphous ITAZO films as advanced coatings for cost-effective silicon based photovoltaic device technology. Materials Today: Proceedings, 2018, 5, 13694-13702.	1.8	1
22	Influence of the AlN interlayer thickness on the photovoltaic properties of in-rich AlInN on Si heterojunctions deposited by RF sputtering. AIP Advances, 2018, 8, .	1.3	6
23	Tailoring of microstructure and optoelectronic properties of Aluminum doped Zinc Oxide changing gun tilt. Materials Science in Semiconductor Processing, 2017, 63, 115-121.	4.0	8
24	Development of algorithm for computer drawing envelopes of interference reflectance spectra for thin film specimens. Optik, 2017, 132, 320-328.	2.9	2
25	Accurate characterization of film on substrate transmitting specimens by the envelope method. , 2016, , .		0
26	Effect of argon plasma-treated polyethylene terepthalate on ZnO:Al properties for flexible thin film silicon solar cells applications. Solar Energy Materials and Solar Cells, 2015, 133, 170-179.	6.2	28
27	Optimization of ZnO:Al based back reflectors for applications in thin film flexible solar cells. Vacuum, 2014, 99, 56-61.	3.5	15
28	Laser texturing of ZnO:Al front contact for efficiency enhancement in thin-film silicon solar cells. , 2013, , .		0
29	Cause of the fill factor loss of a-Si:H p–i–n devices with ZnO:Al front electrode: Blocking contact vs. defect density. Thin Solid Films, 2013, 548, 617-622.	1.8	5
30	Nanosecond laser ablation processes in aluminum-doped zinc-oxide for photovoltaic devices. Applied Surface Science, 2012, 258, 9447-9451.	6.1	10
31	Infrared photoluminescence of high Inâ€content InN/InGaN multipleâ€quantumâ€wells. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 17-20.	1.8	4
32	Development of ZnO:Al-based transparent contacts deposited at low-temperature by RF-sputtering on InN layers. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 1065-1069.	0.8	0
33	Influence of substrate biasing on the growth of c-axis oriented AIN thin films by RF reactive sputtering in pure nitrogen. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 1074-1078.	0.8	4
34	Thermal stability of sputtered Mo/polyimide films and formation of MoSe2 and MoS2 layers for application in flexible Cu(In,Ga)(Se,S)2 based solar cells. Thin Solid Films, 2012, 520, 4163-4168.	1.8	17
35	Preparation and quality assessment of CuS thin films encapsulated in glass. Thin Solid Films, 2012, 520, 4184-4189.	1.8	18
36	Etching process optimization using NH4Cl aqueous solution to texture ZnO:Al films for efficient light trapping in flexible thin film solar cells. Thin Solid Films, 2012, 520, 4144-4149.	1.8	17

Susana FernÃindez

#	Article	IF	CITATIONS
37	Texture optimization process of ZnO:Al thin films using NH4Cl aqueous solution for applications as antireflective coating in thin film solar cells. Thin Solid Films, 2012, 520, 4698-4702.	1.8	11
38	Development of two-step etching approach for aluminium doped zinc oxide using a combination of standard HCl and NH4Cl etch steps. Thin Solid Films, 2012, 520, 4678-4684.	1.8	11
39	Highâ€surfaceâ€quality nanocrystalline InN layers deposited on GaN templates by RF sputtering. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 65-69.	1.8	6
40	High quality textured ZnO:Al surfaces obtained by a two-step wet-chemical etching method for applications in thin film silicon solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 2281-2286.	6.2	41
41	Optimization of aluminum-doped zinc oxide films deposited at low temperature by radio-frequency sputtering on flexible substrates for solar cell applications. Solar Energy Materials and Solar Cells, 2010, 94, 157-163.	6.2	106
42	Influence of deposition conditions on nanocrystalline InN layers synthesized on Si(111) and GaN templates by RF sputtering. Journal of Crystal Growth, 2010, 312, 2689-2694.	1.5	13
43	Applications of ZnO:Al deposited by RF sputtering to InN lowâ€cost technology. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1717-1721.	1.8	4
44	Radio frequency sputter deposition of high-quality conductive and transparent ZnO:Al films on polymer substrates for thin film solar cells applications. Thin Solid Films, 2009, 517, 3152-3156.	1.8	93
45	Selective ablation of photovoltaic materials with UV laser sources for monolithic interconnection of devices based on a-Si:H. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 159-160, 18-22.	3.5	10
46	Non-linear properties of nitride-based nanostructures for optically controlling the speed of light at 1.51¼m. Microelectronics Journal, 2009, 40, 349-352.	2.0	4
47	Optimization of surface morphology and electrical properties of Ti/Al/Ti–W/Au ohmic contacts to n-GaN by two-step annealing method. Semiconductor Science and Technology, 2008, 23, 045021.	2.0	3
48	Novel nitride - based materials for nonlinear optical signal processing applications at 1.5 $ m l^1\!4$ m. , 2007, , .		0
49	Low resistance Tiâ^•Alâ^•Ti–Wâ^•Au Ohmic contact to n-GaN for high temperature applications. Applied Physics Letters, 2007, 90, 083504.	3.3	10
50	Performance enhancement of ohmic contact on n-GaN using Ti–W as metal barrier. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 143, 55-59.	3.5	3
51	Resonant Raman Scattering in Strained and Relaxed In _x Ga _{1-x} N/GaN Multiple Quantum Wells. Materials Science Forum, 2005, 494, 19-24.	0.3	0
52	Effect of the implantation temperature on lattice damage of Be+-implanted GaN. Semiconductor Science and Technology, 2005, 20, 374-377.	2.0	12
53	Resonant Raman Study of Strain and Composition in InGaN Multiquantum Wells. AIP Conference Proceedings, 2005, , .	0.4	0
54	Resonant Raman scattering in strained and relaxed InGaNâ^•GaN multi-quantum wells. Applied Physics Letters, 2005, 86, 061905.	3.3	21

Susana FernÃindez

#	Article	IF	CITATIONS
55	In situgrowth monitoring of distributed GaN–AlGaN Bragg reflectors by metalorganic vapor phase epitaxy. Applied Physics Letters, 2002, 80, 174-176.	3.3	23
56	Resonant-cavity InGaN multiple-quantum-well green light-emitting diode grown by molecular-beam epitaxy. Applied Physics Letters, 2002, 80, 2198-2200.	3.3	43
57	Experimental Characterisation of GaN-Based Resonant Cavity Light Emitting Diodes. Physica Status Solidi A, 2002, 192, 97-102.	1.7	17
58	Nitride RCLEDs Grown by MBE for POF Applications. Physica Status Solidi A, 2002, 192, 277-285.	1.7	16
59	From Ultraviolet to Green InGaN-Based Conventional and Resonant-Cavity Light-Emitting Diodes Grown by Molecular Beam Epitaxy. Physica Status Solidi A, 2002, 192, 341-347.	1.7	4
60	High-Quality Distributed Bragg Reflectors for Resonant-Cavity Light-Emitting Diode Applications. Physica Status Solidi A, 2002, 192, 389-393.	1.7	5
61	Structural and optical characterization of thick InGaN layers and InGaN/GaN MQW grown by molecular beam epitaxy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 93, 131-134.	3.5	22
62	Growth and characterization of high-quality 10-period AlGaN/GaN Bragg reflectors grown by molecular beam epitaxy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 93, 31-34.	3.5	4
63	Plasma-assisted MBE growth of group-III nitrides: from basics to device applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 93, 189-196.	3.5	10
64	MBE-grown high-quality (Al,Ga)N/GaN distributed Bragg reflectors for resonant cavity LEDs. Semiconductor Science and Technology, 2001, 16, 913-917.	2.0	16
65	Study of (Al,Ga)N Bragg Mirrors Grown on Al2O3(0001) and Si(111) by Metalorganic Vapor Phase Epitaxy. Physica Status Solidi A, 2001, 188, 899-903.	1.7	9
66	High-quality distributed Bragg reflectors based on AlxGa1â^'xN/GaN multilayers grown by molecular-beam epitaxy. Applied Physics Letters, 2001, 79, 2136-2138.	3.3	25