
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9223369/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Topical α-Gal Nanoparticles Enhance Wound Healing in Radiated Skin. Skin Pharmacology and Physiology, 2022, 35, 31-40.	2.5	5
2	Near Complete Repair After Myocardial Infarction in Adult Mice by Altering the Inflammatory Response With Intramyocardial Injection of α-Gal Nanoparticles. Frontiers in Cardiovascular Medicine, 2021, 8, 719160.	2.4	9
3	Increasing Efficacy of Enveloped Whole-Virus Vaccines by In situ Immune-Complexing with the Natural Anti-Gal Antibody. Medical Research Archives, 2021, 9, .	0.2	4
4	COVID-19 variants as moving targets and how to stop them by glycoengineered whole-virus vaccines. Virulence, 2021, 12, 1717-1720.	4.4	4
5	In Situ "Humanization―of Porcine Bioprostheses: Demonstration of Tendon Bioprostheses Conversion into Human ACL and Possible Implications for Heart Valve Bioprostheses. Bioengineering, 2021, 8, 10.	3.5	5
6	Biosynthesis of α-Gal Epitopes (Galα1-3Galβ1-4GlcNAc-R) and Their Unique Potential in Future α-Gal Therapies. Frontiers in Molecular Biosciences, 2021, 8, 746883.	3.5	13
7	Amplifying immunogenicity of prospective Covid-19 vaccines by glycoengineering the coronavirus glycan-shield to present α-gal epitopes. Vaccine, 2020, 38, 6487-6499.	3.8	31
8	Host Synthesized Carbohydrate Antigens on Viral Glycoproteins as "Achilles' Heel―of Viruses Contributing to Anti-Viral Immune Protection. International Journal of Molecular Sciences, 2020, 21, 6702.	4.1	9
9	Human Natural Antibodies to Mammalian Carbohydrate Antigens as Unsung Heroes Protecting against Past, Present, and Future Viral Infections. Antibodies, 2020, 9, 25.	2.5	29
10	Topical αâ€gal nanoparticles accelerate diabetic wound healing. Experimental Dermatology, 2020, 29, 404-413.	2.9	23
11	Evolution in primates by "Catastrophicâ€selection―interplay between enveloped virus epidemics, mutated genes of enzymes synthesizing carbohydrate antigens, and natural antiâ€carbohydrate antibodies. American Journal of Physical Anthropology, 2019, 168, 352-363.	2.1	57
12	Antigen-Mediated, Macrophage-Stimulated, Accelerated Wound Healing Using α-Gal Nanoparticles. Annals of Plastic Surgery, 2018, 80, S196-S203.	0.9	12
13	Anti-Gal B Cells Are Tolerized by $\hat{I}\pm$ -Gal Epitopes in the Absence of T Cell Help. , 2018, , 73-95.		1
14	Acceleration of Wound and Burn Healing by Anti-Gal/Î \pm -Gal Nanoparticles Interaction. , 2018, , 207-228.		1
15	Post Infarction Regeneration of Ischemic Myocardium by Intramyocardial Injection of $\hat{I}\pm$ -Gal Nanoparticles. , 2018, , 257-268.		0
16	Anti-Gal in Humans and Its Antigen the α-Gal Epitope. , 2018, , 3-22.		2
17	Why Do We Produce Anti-Gal. , 2018, , 23-43.		1
18	Anti-Gal and Other Immune Barriers in Xenotransplantation. , 2018, , 99-115.		0

Anti-Gal and Other Immune Barriers in Xenotransplantation. , 2018, , 99-115.

#	Article	IF	CITATIONS
19	Anti-Gal and Anti-non Gal Antibodies in Regeneration of Extracellular Matrix Bio-Implants. , 2018, , 231-256.		0
20	Induced Remodeling of Porcine Tendons to Human Anterior Cruciate Ligaments by α-GAL Epitope Removal and Partial Cross-Linking. Tissue Engineering - Part B: Reviews, 2017, 23, 412-419.	4.8	12
21	α-Gal Nanoparticles in Wound and Burn Healing Acceleration. Advances in Wound Care, 2017, 6, 81-92.	5.1	15
22	Phase I study to evaluate toxicity and feasibility of intratumoral injection of $\hat{I}\pm$ -gal glycolipids in patients with advanced melanoma. Cancer Immunology, Immunotherapy, 2016, 65, 897-907.	4.2	11
23	Natural anti-carbohydrate antibodies contributing to evolutionary survival of primates in viral epidemics?. Clycobiology, 2016, 26, 1140-1150.	2.5	27
24	Inhalation of α-gal/sialic acid liposomes: a novel approach for inhibition of influenza virus infection?. Future Virology, 2016, 11, 95-99.	1.8	2
25	AGI-134, a fully synthetic α-Gal-based cancer immunotherapy: Synergy with an anti-PD-1 antibody and pre-clinical pharmacokinetic and toxicity profiles Journal of Clinical Oncology, 2016, 34, 3083-3083.	1.6	2
26	Acceleration of Wound Healing byα-gal Nanoparticles Interacting with the Natural Anti-Gal Antibody. Journal of Immunology Research, 2015, 2015, 1-13.	2.2	18
27	Avoiding Detrimental Human Immune Response Against Mammalian Extracellular Matrix Implants. Tissue Engineering - Part B: Reviews, 2015, 21, 231-241.	4.8	43
28	Significance of the Evolutionary α1,3-Galactosyltransferase (GGTA1) Gene Inactivation in Preventing Extinction of Apes and Old World Monkeys. Journal of Molecular Evolution, 2015, 80, 1-9.	1.8	57
29	Human Anti-Gal and Anti-Non-Gal Immune Response to Porcine Tissue Implants. , 2015, , 239-267.		6
30	Phase I study to evaluate toxicity and feasibility of intratumoral injection of alpha-gal glycolipids in patients with advanced melanoma Journal of Clinical Oncology, 2014, 32, 3088-3088.	1.6	0
31	α1,3Galactosyltransferase knockout pigs produce the natural antiâ€Gal antibody and simulate the evolutionary appearance of this antibody in primates. Xenotransplantation, 2013, 20, 267-276.	2.8	40
32	Discovery of the natural antiâ€Gal antibody and its past and future relevance to medicine. Xenotransplantation, 2013, 20, 138-147.	2.8	42
33	Antiâ€ <scp>G</scp> al: an abundant human natural antibody of multiple pathogeneses and clinical benefits. Immunology, 2013, 140, 1-11.	4.4	191
34	In situ conversion of tumors into autologous tumor-associated antigen vaccines by intratumoral injection of α-gal glycolipids. Oncolmmunology, 2013, 2, e22449.	4.6	5
35	Macrophages Recruitment and Activation by α-gal Nanoparticles Accelerate Regeneration and Can Improve Biomaterials Efficacy in Tissue Engineering. The Open Tissue Engineering and Regenerative Medicine Journal, 2013, 6, 1-11.	2.6	6
36	Induced Anti-Non Gal Antibodies in Human Xenograft Recipients. Transplantation, 2012, 93, 11-16.	1.0	40

#	Article	IF	CITATIONS
37	Accelerated Porcine Wound Healing after Treatment with α-Gal Nanoparticles. Plastic and Reconstructive Surgery, 2012, 129, 242e-251e.	1.4	35
38	Cancer immunotherapy by intratumoral injection of α-gal glycolipids. Anticancer Research, 2012, 32, 3861-8.	1.1	21
39	Rapid Recruitment and Activation of Macrophages by Anti-Gal/α-Gal Liposome Interaction Accelerates Wound Healing. Journal of Immunology, 2011, 186, 4422-4432. Conversion of Tumors into Autologous Vaccines by Intratumoral Injection of <mml:math< td=""><td>0.8</td><td>68</td></mml:math<>	0.8	68
40	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi mathvariant="bold">α-Gal Glycolipids that Induce Anti-Gal/<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="bold">α-Gal Epitope Interaction. Clinical and Developmental</mml:mi </mml:math </mml:mi 	3.3	10
41	Immunology, 2011, 2011, 1-10. In Situ Conversion of Melanoma Lesions into Autologous Vaccine by Intratumoral Injections of α-gal Glycolipids. Cancers, 2010, 2, 773-793.	3.7	10
42	Accelerated healing of skin burns by anti-Gal/α-gal liposomes interaction. Burns, 2010, 36, 239-251.	1.9	50
43	Increased immunogenicity of HIV-1 p24 and gp120 following immunization with gp120/p24 fusion protein vaccine expressing α-gal epitopes. Vaccine, 2010, 28, 1758-1765.	3.8	36
44	Intratumoral injection of α-gal glycolipids induces a protective anti-tumor T cell response which overcomes Treg activity. Cancer Immunology, Immunotherapy, 2009, 58, 1545-1556.	4.2	31
45	Mechanism for increased immunogenicity of vaccines that form in vivo immune complexes with the natural anti-Gal antibody. Vaccine, 2009, 27, 3072-3082.	3.8	64
46	Immunogenicity of Influenza Virus Vaccine Is Increased by Anti-Gal-Mediated Targeting to Antigen-Presenting Cells. Journal of Virology, 2007, 81, 9131-9141.	3.4	91
47	Intratumoral Injection of α-gal Glycolipids Induces Xenograft-Like Destruction and Conversion of Lesions into Endogenous Vaccines. Journal of Immunology, 2007, 178, 4676-4687.	0.8	63
48	Replacement of Human Anterior Cruciate Ligaments with Pig Ligaments: A Model for Anti-Non-Gal Antibody Response in Long-Term Xenotransplantation. Transplantation, 2007, 83, 211-219.	1.0	98
49	Anterior Cruciate Ligament Reconstruction With a Porcine Xenograft: A Serologic, Histologic, and Biomechanical Study in Primates. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2007, 23, 411-419.e1.	2.7	72
50	Xenotransplantation and ABO incompatible transplantation: The similarities they share. Transfusion and Apheresis Science, 2006, 35, 45-58.	1.0	50
51	Profiling terminal N-acetyllactosamines of glycans on mammalian cells by an immuno-enzymatic assay. Glycoconjugate Journal, 2006, 23, 663-674.	2.7	22
52	Increased Immunogenicity of Human Immunodeficiency Virus gp120 Engineered To Express Galα1-3Galβ1-4GlcNAc-R Epitopes. Journal of Virology, 2006, 80, 6943-6951.	3.4	77
53	The αâ€gal epitope and the antiâ€Gal antibody in xenotransplantation and in cancer immunotherapy. Immunology and Cell Biology, 2005, 83, 674-686.	2.3	299
54	Anti-Gal-mediated targeting of human B lymphoma cells to antigen-presenting cells: a potential method for immunotherapy using autologous tumor cells. Haematologica, 2005, 90, 625-34.	3.5	27

#	Article	IF	CITATIONS
55	Autologous tumor vaccines processed to express ?-gal epitopes: a practical approach to immunotherapy in cancer. Cancer Immunology, Immunotherapy, 2004, 53, 935-45.	4.2	28
56	Immune Response, Accommodation, and Tolerance to Transplantation Carbohydrate Antigens. Transplantation, 2004, 78, 1093-1098.	1.0	76
57	Expression of α-gal epitopes on ovarian carcinoma membranes to be used as a novel autologous tumor vaccine. Gynecologic Oncology, 2003, 90, 100-108.	1.4	23
58	Tolerance induction to a mammalian blood group—like carbohydrate antigen by syngeneic lymphocytes expressing the antigen, II: tolerance induction on memory B cells. Blood, 2003, 102, 229-236.	1.4	26
59	Tolerance induction to a mammalian blood group–like carbohydrate antigen by syngeneic lymphocytes expressing the antigen. Blood, 2003, 101, 2318-2320.	1.4	16
60	Expression of Â-gal epitopes on HeLa cells transduced with adenovirus containing Â1,3galactosyltransferase cDNA. Glycobiology, 2002, 12, 135-144.	2.5	23
61	Anti-gal A/B, a novel anti-blood group antibody identified in recipients of abo-incompatible kidney allografts1. Transplantation, 2002, 74, 1574-1580.	1.0	30
62	On the role of cell surface carbohydrates and their binding proteins (lectins) in tumor metastasis. Cancer and Metastasis Reviews, 2001, 20, 245-277.	5.9	255
63	Synthesis of Â-gal epitopes (GalÂ1-3GalÂ1-4GlcNAc-R) on human tumor cells by recombinant Â1,3galactosyltransferase produced in Pichia pastoris. Glycobiology, 2001, 11, 577-586.	2.5	29
64	Preparation of Autologous Leukemia and Lymphoma Vaccines Expressingα-Gal Epitopes. Journal of Hematotherapy and Stem Cell Research, 2001, 10, 501-511.	1.8	13
65	Genes coding evolutionary novel anti-carbohydrate antibodies: studies on anti-Gal production in α1,3galactosyltransferase knock out mice. Molecular Immunology, 2000, 37, 455-466.	2.2	26
66	alpha-Galactosyl epitopes on glycoproteins of porcine renal extracellular matrix. Kidney International, 2000, 57, 655-663.	5.2	10
67	DIFFERENTIAL EXPRESSION OF ??-GAL EPITOPES (Gal??1???3Gal??1???4GlcNAc-R) ON PIG AND MOUSE ORGANS. Transplantation, 2000, 69, 187.	1.0	61
68	Differential immune responses to \hat{l}_{\pm} -gal epitopes on xenografts and allografts: implications for accommodation in xenotransplantation. Journal of Clinical Investigation, 2000, 105, 301-310.	8.2	147
69	α-Galactosyl antibody redistributes α-galactosyl at the surface of pig blood and endothelial cells. Transplant Immunology, 1999, 7, 101-106.	1.2	5
70	Interaction of Baboon Anti-α-Galactosyl Antibody with Pig Tissues. American Journal of Pathology, 1999, 155, 1635-1649.	3.8	37
71	Significance of .ALPHAGal (Gal.ALPHA.1-3Gal.BETA.1-4GlcNAc-R) Epitopes and .ALPHA.1,3 Galactosyltransferase in Xenotransplantation Trends in Glycoscience and Glycotechnology, 1999, 11, 317-327.	0.1	10
72	Adult and neonatal anti-Gal response in knock-out mice for ?1,3galactosyltransferase. Xenotransplantation, 1998, 5, 191-196.	2.8	82

#	Article	IF	CITATIONS
73	A SENSITIVE ASSAY FOR MEASURING ??-GAL EPITOPE EXPRESSION ON CELLS BY A MONOCLONAL ANTI-GAL ANTIBODY1. Transplantation, 1998, 65, 1129-1132.	1.0	107
74	PORCINE CARTILAGE TRANSPLANTS IN THE CYNOMOLGUS MONKEY. Transplantation, 1998, 65, 1577-1583.	1.0	107
75	Highâ€affinity antiâ€Gal immunoglobulin G in chronic rejection of xenografts. Xenotransplantation, 1997, 4, 127-131.	2.8	26
76	PORCINE AND BOVINE CARTILAGE TRANSPLANTS IN CYNOMOLGUS MONKEY. Transplantation, 1997, 63, 640-645.	1.0	84
77	PORCINE AND BOVINE CARTILAGE TRANSPLANTS IN CYNOMOLGUS MONKEY. Transplantation, 1997, 63, 646-651.	1.0	102
78	Enhancement of antigen presentation of influenza virus hemagglutinin by the natural human anti-Gal antibody. Vaccine, 1996, 14, 321-328.	3.8	52
79	Molecular mimicry in the recognition of glycosphingolipids by Galα3Galβ4GlcNAcβ-binding Clostridium difficile toxin A, human natural anti α-galactosyl IgG and the monoclonal antibody Gal-13: characterization of a binding-active human glycosphingolipid, non-identical with the animal receptor. Glycobiology. 1996. 6. 599-609.	2.5	106
80	INHIBITION OF ANTI-GAL IgG BINDING TO PORCINE ENDOTHELIAL CELLS BY SYNTHETIC OLIGOSACCHARIDES1. Transplantation, 1996, 62, 256-262.	1.0	54
81	INCREASED ANTI-GAL ACTIVITY IN DIABETIC PATIENTS TRANSPLANTED WITH FETAL PORCINE ISLET CELL CLUSTERS. Transplantation, 1995, 59, 1549-1556.	1.0	132
82	Suppression of α-galactosyl epitopes synthesis and production of the natural anti-Gal antibody: a major evolutionary event in ancestral Old World primates. Journal of Human Evolution, 1995, 29, 433-442.	2.6	34
83	Variations in Activity of the Human Natural Anti-Gal Antibody in Young and Elderly Populations. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 1995, 50A, M227-M233.	3.6	41
84	Defining the minimal size of catalytically active primate α1,3 galactosyltransferase: structure-function studies on the recombinant truncated enzyme. Glycobiology, 1994, 4, 193-202.	2.5	108
85	Interaction of the natural anti-Gal antibody with $\hat{l}\pm$ -galactosyl epitopes: a major obstacle for xenotransplantation in humans. Trends in Immunology, 1993, 14, 480-482.	7.5	630
86	Evolution and pathophysiology of the human natural anti-?-galactosyl IgG (anti-Gal) antibody. Seminars in Immunopathology, 1993, 15, 155-71.	4.0	179
87	The α-galactosyl epitope on mammalian thyroid cells. European Journal of Endocrinology, 1991, 124, 692-699.	3.7	40
88	Distribution of Gal.alpha.1.fwdarw.3Gal.beta.1.fwdarw.4GlcNAc residues on secreted mammalian glycoproteins (thyroglobulin, fibrinogen, and immunoglobulin G) as measured by a sensitive solid-phase radioimmunoassay. Biochemistry, 1990, 29, 3959-3965.	2.5	133
89	ABNORMAL EXPRESSION OF α-GALACTOSYL EPITOPES IN MAN. Lancet, The, 1989, 334, 358-361.	13.7	62
90	Understanding the Induced Antibody Response. Graft: Organ and Cell Transplantation, 0, 4, 32-35.	0.0	26