Lance J Stewart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9223190/publications.pdf

Version: 2024-02-01

516215 752256 2,847 20 16 20 citations g-index h-index papers 27 27 27 3933 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science, 2020, 370, 426-431.	6.0	464
2	De novo design of potent and selective mimics of IL-2 and IL-15. Nature, 2019, 565, 186-191.	13.7	362
3	Massively parallel de novo protein design for targeted therapeutics. Nature, 2017, 550, 74-79.	13.7	354
4	Induction of Potent Neutralizing Antibody Responses by a Designed Protein Nanoparticle Vaccine for Respiratory Syncytial Virus. Cell, 2019, 176, 1420-1431.e17.	13.5	339
5	Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature, 2021, 592, 623-628.	13.7	180
6	Design of protein-binding proteins from the target structure alone. Nature, 2022, 605, 551-560.	13.7	164
7	De novo design of modular and tunable protein biosensors. Nature, 2021, 591, 482-487.	13.7	153
8	Enhancing and shaping the immunogenicity of native-like HIV-1 envelope trimers with a two-component protein nanoparticle. Nature Communications, 2019, 10, 4272.	5.8	149
9	Computational design of transmembrane pores. Nature, 2020, 585, 129-134.	13.7	120
10	De novo design of self-assembling helical protein filaments. Science, 2018, 362, 705-709.	6.0	112
11	Designed proteins assemble antibodies into modular nanocages. Science, 2021, 372, .	6.0	104
12	Multivalent designed proteins neutralize SARS-CoV-2 variants of concern and confer protection against infection in mice. Science Translational Medicine, 2022, 14, eabn1252.	5.8	68
13	A Computationally Designed Hemagglutinin Stem-Binding Protein Provides In Vivo Protection from Influenza Independent of a Host Immune Response. PLoS Pathogens, 2016, 12, e1005409.	2.1	49
14	Three structurally and functionally distinct \hat{l}^2 -glucuronidases from the human gut microbe Bacteroides uniformis. Journal of Biological Chemistry, 2018, 293, 18559-18573.	1.6	47
15	Anchor extension: a structure-guided approach to design cyclic peptides targeting enzyme active sites. Nature Communications, 2021, 12, 3384.	5.8	37
16	Ultrapotent miniproteins targeting the SARS-CoV-2 receptor-binding domain protect against infection and disease. Cell Host and Microbe, 2021, 29, 1151-1161.e5.	5.1	36
17	Thermodynamically coupled biosensors for detecting neutralizing antibodies against SARS-CoV-2 variants. Nature Biotechnology, 2022, 40, 1336-1340.	9.4	23
18	Transferrin receptor targeting by de novo sheet extension. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17

#	#	Article	IF	CITATIONS
1	19	Large-scale design and refinement of stable proteins using sequence-only models. PLoS ONE, 2022, 17, e0265020.	1.1	17
2	20	Structures and disulfide crossâ€linking of de novo designed therapeutic miniâ€proteins. FEBS Journal, 2018, 285, 1783-1785.	2.2	10