
Li-Ming Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9222869/publications.pdf Version: 2024-02-01

LI-MING FANG

#	Article	lF	CITATIONS
1	Musselâ€Inspired Adhesive and Conductive Hydrogel with Long‣asting Moisture and Extreme Temperature Tolerance. Advanced Functional Materials, 2018, 28, 1704195.	7.8	788
2	Mussel-Inspired Adhesive and Tough Hydrogel Based on Nanoclay Confined Dopamine Polymerization. ACS Nano, 2017, 11, 2561-2574.	7.3	749
3	Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry. Nature Communications, 2019, 10, 1487.	5.8	675
4	A Musselâ€Inspired Conductive, Selfâ€Adhesive, and Selfâ€Healable Tough Hydrogel as Cell Stimulators and Implantable Bioelectronics. Small, 2017, 13, 1601916.	5.2	543
5	Transparent, Adhesive, and Conductive Hydrogel for Soft Bioelectronics Based on Light-Transmitting Polydopamine-Doped Polypyrrole Nanofibrils. Chemistry of Materials, 2018, 30, 5561-5572.	3.2	331
6	Processing and mechanical properties of HA/UHMWPE nanocomposites. Biomaterials, 2006, 27, 3701-3707.	5.7	236
7	Graphene Oxideâ€Templated Conductive and Redoxâ€Active Nanosheets Incorporated Hydrogels for Adhesive Bioelectronics. Advanced Functional Materials, 2020, 30, 1907678.	7.8	225
8	Conductive and Tough Hydrogels Based on Biopolymer Molecular Templates for Controlling in Situ Formation of Polypyrrole Nanorods. ACS Applied Materials & Interfaces, 2018, 10, 36218-36228.	4.0	181
9	Silver Nanoparticles and Growth Factors Incorporated Hydroxyapatite Coatings on Metallic Implant Surfaces for Enhancement of Osteoinductivity and Antibacterial Properties. ACS Applied Materials & Interfaces, 2014, 6, 8580-8589.	4.0	172
10	Processing of hydroxyapatite reinforced ultrahigh molecular weight polyethylene for biomedical applications. Biomaterials, 2005, 26, 3471-3478.	5.7	135
11	An Anisotropic Hydrogel Based on Mussel-Inspired Conductive Ferrofluid Composed of Electromagnetic Nanohybrids. Nano Letters, 2019, 19, 8343-8356.	4.5	107
12	Highly compressible and superior low temperature tolerant supercapacitors based on dual chemically crosslinked PVA hydrogel electrolytes. Journal of Materials Chemistry A, 2020, 8, 6219-6228.	5.2	101
13	Mussel-Inspired Redox-Active and Hydrophilic Conductive Polymer Nanoparticles for Adhesive Hydrogel Bioelectronics. Nano-Micro Letters, 2020, 12, 169.	14.4	98
14	Molecular dynamics simulations on the interaction between polymers and hydroxyapatite with and without coupling agents. Acta Biomaterialia, 2009, 5, 1169-1181.	4.1	89
15	Bioinspired adhesive and tumor microenvironment responsive nanoMOFs assembled 3D-printed scaffold for anti-tumor therapy and bone regeneration. Nano Today, 2021, 39, 101182.	6.2	85
16	High strength and bioactive hydroxyapatite nano-particles reinforced ultrahigh molecular weight polyethylene. Composites Part B: Engineering, 2007, 38, 345-351.	5.9	76
17	Pulse Electrochemical Driven Rapid Layer-by-Layer Assembly of Polydopamine and Hydroxyapatite Nanofilms via Alternative Redox <i>in Situ</i> Synthesis for Bone Regeneration. ACS Biomaterials Science and Engineering, 2016, 2, 920-928.	2.6	52
18	Silicone rubber nanocomposites containing a small amount of hybrid fillers with enhanced electrical sensitivity. Materials & Design, 2013, 45, 548-554.	5.1	48

LI-MING FANG

#	Article	IF	CITATIONS
19	Experimental and simulation studies of strontium/fluoride-codoped hydroxyapatite nanoparticles with osteogenic and antibacterial activities. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110359.	2.5	43
20	Durable Antibacterial Cotton Fabrics Based on Natural Borneolâ€Derived Antiâ€MRSA Agents. Advanced Healthcare Materials, 2020, 9, e2000186.	3.9	34
21	Investigation of emulsified, acid and acid-alkali catalyzed mesoporous bioactive glass microspheres for bone regeneration and drug delivery. Materials Science and Engineering C, 2013, 33, 4236-4243.	3.8	33
22	Synthesis and bioactive properties of macroporous nanoscale SiO2–CaO–P2O5 bioactive glass. Journal of Non-Crystalline Solids, 2009, 355, 2678-2681.	1.5	32
23	Fabrication, structure and biological properties of organic acid-derived sol–gel bioactive glasses. Biomedical Materials (Bristol), 2010, 5, 054103.	1.7	31
24	Mussel-inspired nano-multilayered coating on magnesium alloys for enhanced corrosion resistance and antibacterial property. Colloids and Surfaces B: Biointerfaces, 2017, 157, 432-439.	2.5	29
25	Preparation and properties of dynamically cured poly(vinylidene fluoride)/silicone rubber blends. Polymer Testing, 2013, 32, 1072-1078.	2.3	27
26	The effects of hydroxyl groups on Ca adsorption on rutile surfaces: a first-principles study. Journal of Materials Science: Materials in Medicine, 2010, 21, 1-10.	1.7	25
27	pH and lightâ€responsive polycaprolactone/curcumin@zifâ€8 composite films with enhanced antibacterial activity. Journal of Food Science, 2021, 86, 3550-3562.	1.5	25
28	Surface nanoscale patterning of bioactive glass to support cellular growth and differentiation. Journal of Biomedical Materials Research - Part A, 2010, 94A, 1091-1099.	2.1	24
29	Influence of Sintering Temperature on Pore Structure and Apatite Formation of a Sol–Gelâ€Derived Bioactive Glass. Journal of the American Ceramic Society, 2010, 93, 32-35.	1.9	24
30	Morphology Study of Peroxide-Induced Dynamically Vulcanized Polypropylene/Ethylene-Propylene-Diene Monomer/Zinc Dimethacrylate Blends during Tensile Deformation. Journal of Physical Chemistry B, 2013, 117, 7819-7825.	1.2	24
31	Novel niobium and silver toughened hydroxyapatite nanocomposites with enhanced mechanical and biological properties for load-bearing bone implants. Applied Materials Today, 2019, 15, 531-542.	2.3	23
32	Phosphatidylserine enhances osteogenic differentiation in human mesenchymal stem cells via ERK signal pathways. Materials Science and Engineering C, 2013, 33, 1783-1788.	3.8	22
33	Highly compressible hydrogel sensors with synergistic long-lasting moisture, extreme temperature tolerance and strain-sensitivity properties. Materials Chemistry Frontiers, 2020, 4, 3319-3327.	3.2	22
34	pH-responsive curcumin-based nanoscale ZIF-8 combining chemophotodynamic therapy for excellent antibacterial activity. RSC Advances, 2022, 12, 10005-10013.	1.7	19
35	Molecular dynamics simulation of RGD peptide adsorption on titanium oxide surfaces. Journal of Materials Science: Materials in Medicine, 2008, 19, 3437-3441.	1.7	17
36	Role of Stiffness versus Wettability in Regulating Cell Behaviors on Polymeric Surfaces. ACS Biomaterials Science and Engineering, 2020, 6, 912-922.	2.6	17

LI-MING FANG

#	Article	IF	CITATIONS
37	<i>In situ</i> reactive compatibilized polypropylene/nitrile butadiene rubber blends by zinc dimethacrylate: Preparation, structure, and properties. Polymer Engineering and Science, 2014, 54, 2321-2331.	1.5	16
38	Effects of atomic-level nano-structured hydroxyapatite on adsorption of bone morphogenetic protein-7 and its derived peptide by computer simulation. Scientific Reports, 2017, 7, 15152.	1.6	16
39	Structure and properties of polyacrylic acid modified hydroxyapatite/liquid crystal polymer composite. Journal of Reinforced Plastics and Composites, 2011, 30, 1155-1163.	1.6	13
40	Atomic-scale interactions at the interface of biopolymer/hydroxyapatite. Biomedical Materials (Bristol), 2008, 3, 044110.	1.7	12
41	Temperature window effect and its application in extrusion of ultrahigh molecular weight polyethylene. EXPRESS Polymer Letters, 2011, 5, 674-684.	1.1	12
42	Processing and characterization of TLCP fibers reinforced by 1Âwt% MWCNT. Journal of Materials Science, 2012, 47, 8094-8102.	1.7	9
43	Morphology and properties of poly(vinylidene fluoride)/silicone rubber blends. Journal of Applied Polymer Science, 2014, 131, .	1.3	3
44	Octacalcium phosphate fiber synthesized by homogeneous precipitation method. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 747-752.	0.4	1
45	Influence of sintering temperature on the pore structure and apatite formation of a solâ€gelâ€derived bioactive glass. Journal of the American Ceramic Society, 2022, 105, 3655-3655.	1.9	1