Feng-Chun Hsia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9222686/publications.pdf

Version: 2024-02-01

	840776		839539	
18	798	11	18	
papers	citations	h-index	g-index	
18	18	18	1542	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage. Nature Communications, 2018, 9, 402.	12.8	227
2	Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes. Science Advances, 2018, 4, eaap9264.	10.3	178
3	Mechanical Properties of Si Nanowires as Revealed by in Situ Transmission Electron Microscopy and Molecular Dynamics Simulations. Nano Letters, 2012, 12, 1898-1904.	9.1	151
4	CoNiFe Layered Double Hydroxide/RuO _{2.1} Nanosheet Superlattice as Carbon-Free Electrocatalysts for Water Splitting and Li–O ₂ Batteries. ACS Applied Materials & Liaemp; Interfaces, 2020, 12, 33083-33093.	8.0	47
5	Semiconductor nanochannels in metallic carbon nanotubes by thermomechanical chirality alteration. Science, 2021, 374, 1616-1620.	12.6	32
6	Mesoscopic physical removal of material using sliding nano-diamond contacts. Scientific Reports, 2018, 8, 2994.	3.3	30
7	Three-in-one cathode host based on Nb ₃ O ₈ /graphene superlattice heterostructures for high-performance Li–S batteries. Journal of Materials Chemistry A, 2021, 9, 9952-9960.	10.3	22
8	Rougher is more slippery: How adhesive friction decreases with increasing surface roughness due to the suppression of capillary adhesion. Physical Review Research, 2021, 3, .	3 . 6	21
9	Wear particle dynamics drive the difference between repeated and non-repeated reciprocated sliding. Tribology International, 2020, 142, 105983.	5.9	19
10	Friction on Ice: How Temperature, Pressure, and Speed Control the Slipperiness of Ice. Physical Review $X, 2021, 11, .$	8.9	14
11	Contribution of Capillary Adhesion to Friction at Macroscopic Solid–Solid Interfaces. Physical Review Applied, 2022, 17, .	3.8	13
12	A controllable and efficient method for the fabrication of a single HfC nanowire field-emission point electron source aided by low keV FIB milling. Nanoscale, 2020, 12, 16770-16774.	5 . 6	12
13	Chirality transitions and transport properties of individual few-walled carbon nanotubes as revealed by in situ TEM probing. Ultramicroscopy, 2018, 194, 108-116.	1.9	9
14	Intrinsic and Defect-Related Elastic Moduli of Boron Nitride Nanotubes As Revealed by <i>in Situ</i> Transmission Electron Microscopy. Nano Letters, 2019, 19, 4974-4980.	9.1	8
15	Tracing single asperity wear in relation to macroscale friction during running-in. Tribology International, 2021, 162, 107108.	5.9	7
16	Realization and direct observation of five normal and parametric modes in silicon nanowire resonators by <i>in situ</i> transmission electron microscopy. Nanoscale Advances, 2019, 1, 1784-1790.	4.6	4
17	Tunable Mechanical and Electrical Properties of Coaxial BN Nanotubes. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800576.	2.4	3
18	Electrical conduction and field emission of a single-crystalline GdB ₄₄ Si ₂ nanowire. Nanoscale, 2020, 12, 18263-18268.	5.6	1