
Daniel J Peppe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9222531/publications.pdf Version: 2024-02-01

DANIEL I DEDDE

#	Article	IF	CITATIONS
1	Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist, 2011, 190, 724-739.	7.3	445
2	On impact and volcanism across the Cretaceous-Paleogene boundary. Science, 2020, 367, 266-272.	12.6	178
3	The extinction of the dinosaurs. Biological Reviews, 2015, 90, 628-642.	10.4	135
4	The Impact of the Geologic History and Paleoclimate on the Diversification of East African Cichlids. International Journal of Evolutionary Biology, 2012, 2012, 1-20.	1.0	83
5	The Pleistocene archaeology and environments of the Wasiriya Beds, Rusinga Island, Kenya. Journal of Human Evolution, 2010, 59, 657-671.	2.6	81
6	Paleoenvironmental context of the Middle Stone Age record from Karungu, Lake Victoria Basin, Kenya, and its implications for human and faunal dispersals in East Africa. Journal of Human Evolution, 2015, 83, 28-45.	2.6	76
7	Leaf economic traits from fossils support a weedy habit for early angiosperms. American Journal of Botany, 2010, 97, 438-445.	1.7	66
8	The Pleistocene prehistory of the Lake Victoria basin. Quaternary International, 2016, 404, 100-114.	1.5	65
9	Stable isotope paleoecology of Late Pleistocene Middle Stone Age humans from the Lake Victoria basin, Kenya. Journal of Human Evolution, 2015, 82, 1-14.	2.6	56
10	Taxonomic status and paleoecology of <i>Rusingoryx atopocranion</i> (Mammalia, Artiodactyla), an extinct Pleistocene bovid from Rusinga Island, Kenya. Quaternary Research, 2011, 75, 697-707.	1.7	55
11	Novel Insect Leaf-Mining after the End-Cretaceous Extinction and the Demise of Cretaceous Leaf Miners, Great Plains, USA. PLoS ONE, 2014, 9, e103542.	2.5	54
12	Roles of climate and functional traits in controlling toothed vs. untoothed leaf margins. American Journal of Botany, 2012, 99, 915-922.	1.7	53
13	Distal tephras of the eastern Lake Victoria basin, equatorial East Africa: correlations, chronology and a context for early modern humans. Quaternary Science Reviews, 2015, 122, 89-111.	3.0	53
14	Late Pleistocene artefacts and fauna from Rusinga and Mfangano islands, Lake Victoria, Kenya. Azania, 2012, 47, 14-38.	0.9	48
15	Reconstructing Paleoclimate and Paleoecology Using Fossil Leaves. Vertebrate Paleobiology and Paleoanthropology, 2018, , 289-317.	0.5	47
16	The fossil history of <scp>G</scp> révy's zebra (<i><scp>E</scp>quus grevyi</i>) in equatorial East <scp>A</scp> frica. Journal of Biogeography, 2013, 40, 359-369.	3.0	46
17	Remnants of an ancient forest provide ecological context for Early Miocene fossil apes. Nature Communications, 2014, 5, 3236.	12.8	45
18	Leaf size estimation based on leaf length, width and shape. Annals of Botany, 2021, 128, 395-406.	2.9	42

Daniel J Peppe

#	Article	IF	CITATIONS
19	Quantification of large uncertainties in fossil leaf paleoaltimetry. Tectonics, 2010, 29, .	2.8	40
20	Sites on the landscape: Paleoenvironmental context of late Pleistocene archaeological sites from the Lake Victoria basin, equatorial East Africa. Quaternary International, 2014, 331, 20-30.	1.5	40
21	Stratigraphic interpretation of the Kulu Formation (Early Miocene, Rusinga Island, Kenya) and its implications for primate evolution. Journal of Human Evolution, 2009, 56, 447-461.	2.6	37
22	Paleosols and paleoenvironments of the early Miocene deposits near Karungu, Lake Victoria, Kenya. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 443, 167-182.	2.3	35
23	Megafloral change in the early and middle Paleocene in the Williston Basin, North Dakota, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 298, 224-234.	2.3	32
24	Environmental Change, Ungulate Biogeography, and Their Implications for Early Human Dispersals in Equatorial East Africa. Vertebrate Paleobiology and Paleoanthropology, 2016, , 233-245.	0.5	30
25	The influences of environmental change and development on leaf shape in <i>Vitis</i> . American Journal of Botany, 2020, 107, 676-688.	1.7	28
26	A Morphotype Catalogue, Floristic Analysis and Stratigraphic Description of the Aspen Shale Flora(Cretaceous–Albian) of Southwestern Wyoming. Bulletin of the Peabody Museum of Natural History, 2008, 49, 181-208.	1.1	27
27	New specimens of â€~ <i>Crocodylus</i> ' <i>pigotti</i> (Crocodylidae) from Rusinga Island, Kenya, and generic reallocation of the species. Journal of Vertebrate Paleontology, 2013, 33, 629-646.	1.0	27
28	Reconstruction of a semi-arid late Pleistocene paleocatena from the Lake Victoria region, Kenya. Quaternary Research, 2015, 84, 368-381.	1.7	27
29	Recurrent springâ€fed rivers in a Middle to Late Pleistocene semiâ€arid grassland: Implications for environments of early humans in the Lake Victoria Basin, Kenya. Sedimentology, 2015, 62, 1611-1635.	3.1	26
30	The Early Miocene Critical Zone at Karungu, Western Kenya: An Equatorial, Open Habitat with Few Primate Remains. Frontiers in Earth Science, 2017, 5, .	1.8	26
31	FOSSIL LEAF SPECIES FROM THE FOX HILLS FORMATION (UPPER CRETACEOUS: NORTH DAKOTA, USA) AND THEIR PALEOGEOGRAPHIC SIGNIFICANCE. Journal of Paleontology, 2007, 81, 550-567.	0.8	25
32	Rapid Pleistocene desiccation and the future of Africa's Lake Victoria. Earth and Planetary Science Letters, 2020, 530, 115883.	4.4	25
33	Biogeographic and Evolutionary Implications of an Extinct Late Pleistocene Impala from the Lake Victoria Basin, Kenya. Journal of Mammalian Evolution, 2014, 21, 213-222.	1.8	22
34	A morphotype catalog and paleoenvironmental interpretations of early Miocene fossil leaves from the Hiwegi Formation, Rusinga Island, Lake Victoria, Kenya. Palaeontologia Electronica, 2013, 16, .	0.9	21
35	On geologic timescales, plant carbon isotope fractionation responds to precipitation similarly to modern plants and has a small negative correlation with pCO2. Geochimica Et Cosmochimica Acta, 2020, 270, 264-281.	3.9	20
36	Evaluating the potential for tactical hunting in the Middle Stone Age: Insights from a bonebed of the extinct bovid, Rusingoryx atopocranion. Journal of Human Evolution, 2017, 108, 72-91.	2.6	19

DANIEL J PEPPE

#	Article	lF	CITATIONS
37	Reconstruction of Late Pleistocene Paleoenvironments Using Bulk Geochemistry of Paleosols from the Lake Victoria Region. Frontiers in Earth Science, 2017, 5, .	1.8	19
38	Conodont (U–Th)/He thermochronology: Initial results, potential, and problems. Earth and Planetary Science Letters, 2007, 258, 569-580.	4.4	18
39	Size variation in Tachyoryctes splendens (East African mole-rat) and its implications for late Quaternary temperature change in equatorial East Africa. Quaternary Science Reviews, 2016, 140, 39-48.	3.0	18
40	Unexpected Convergent Evolution of Nasal Domes between Pleistocene Bovids and Cretaceous Hadrosaur Dinosaurs. Current Biology, 2016, 26, 503-508.	3.9	18
41	Biomechanical and leaf–climate relationships: A comparison of ferns and seed plants. American Journal of Botany, 2014, 101, 338-347.	1.7	17
42	Terrestrial evidence for the Lilliput effect across the Cretaceous-Paleogene (K-Pg) boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 491, 161-169.	2.3	17
43	Early Paleocene tropical forest from the Ojo Alamo Sandstone, San Juan Basin, New Mexico, USA. Paleobiology, 2019, 45, 612-635.	2.0	17
44	Revised age constraints for Late Cretaceous to early Paleocene terrestrial strata from the Dawson Creek section, Big Bend National Park, west Texas. Bulletin of the Geological Society of America, 2018, 130, 1143-1163.	3.3	15
45	Paleoclimate and paleoecology of the latest Eocene Florissant flora of central Colorado, U.S.A Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 551, 109678.	2.3	15
46	High-resolution magnetostratigraphy of the Upper Nacimiento Formation, San Juan Basin, New Mexico, USA: Implications for basin evolution and mammalian turnover. Numerische Mathematik, 2018, 318, 300-334.	1.4	14
47	Early Paleocene Magnetostratigraphy and Revised Biostratigraphy of the Ojo Alamo Sandstone and Lower Nacimiento Formation, San Juan Basin, New Mexico, USA. Bulletin of the Geological Society of America, 2020, 132, 2154-2174.	3.3	14
48	Sedimentology, stratigraphy, and paleoclimate at the late Miocene Coffee Ranch fossil site in the Texas Panhandle. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485, 361-376.	2.3	12
49	New Rhinocerotidae from the Kisingiri localities (lower Miocene of western Kenya). Journal of Vertebrate Paleontology, 2016, 36, e1103247.	1.0	11
50	Late Pleistocene Mammals from Kibogo, Kenya: Systematic Paleontology, Paleoenvironments, and Non-Analog Associations. Journal of Vertebrate Paleontology, 2020, 40, e1841781.	1.0	11
51	Sedimentological and palaeoenvironmental study from Waregi Hill in the Hiwegi Formation (early) Tj ETQq1 1	0.784314 r	gBT_/Overloci
52	Magnetostratigraphy of the Ludlow Member of the Fort Union Formation (Lower Paleocene) in the Williston Basin, North Dakota. Bulletin of the Geological Society of America, 2006, preprint, 1.	3.3	10
53	Tephrostratigraphy of the eastern Lake Victoria Basin including the Nyanza Rift, Kenya: Building a stratigraphic and chronological framework for modern human evolution. Quaternary Science Reviews, 2021, 256, 106823.	3.0	10
54	Magnetostratigraphy of the Lebo and Tongue River Members of the Fort Union Formation (Paleocene) in the northeastern Powder River Basin, Montana. Numerische Mathematik, 2011, 311, 813-850.	1.4	7

DANIEL J PEPPE

#	Article	IF	CITATIONS
55	The influence of time on the magnetic properties of late Quaternary periglacial and alluvial surface and buried soils along the Delaware River, USA. Frontiers in Earth Science, 2014, 2, .	1.8	7
56	EARLY MIOCENE PALEOCLIMATE AND PALEOENVIRONMENTS ACROSS EAST AFRICA. , 2017, , .		6
57	Quantifying the effect of shade on cuticle morphology and carbon isotopes of sycamores: present and past. American Journal of Botany, 2021, 108, 2435-2451.	1.7	6
58	Hot summers in continental interiors: The case against equability during the early Paleogene. Geology, 2013, 41, 95-96.	4.4	5
59	Climate and landscape reconstruction of the Arroyo Chijuillita Member of the Nacimiento Formation, San Juan Basin, New Mexico: Providing environmental context to early Paleocene mammal evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 463, 27-44.	2.3	5
60	A Late Pleistocene human humerus from Rusinga Island, Lake Victoria, Kenya. Journal of Human Evolution, 2020, 146, 102855.	2.6	5
61	Ecomorphology and ecology of the grassland specialist, Rusingoryx atopocranion (Artiodactyla:) Tj ETQq1 1 0.784	4314 rgBT 1.7	Överlock 1
62	Paleoenvironmental changes in the Hiwegi Formation (lower Miocene) of Rusinga Island, Lake Victoria, Kenya. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 574, 110458.	2.3	5
63	Moderate to Elevated Atmospheric CO ₂ During the Early Paleocene Recorded by <i>Platanites</i> Leaves of the San Juan Basin, New Mexico. Paleoceanography and Paleoclimatology, 2022, 37, .	2.9	5
64	Fort Union Formation Fossil Leaves (Paleocene, Williston Basin, North Dakota, USA) Indicate Evolutionary Relationships Between Paleocene and Eocene Plant Species. Bulletin of the Peabody Museum of Natural History, 2014, 55, 171-189.	1,1	4
65	The Multi-Stranded Career of Leo J. Hickey. Bulletin of the Peabody Museum of Natural History, 2014, 55, 69-78.	1.1	2
66	Can climate feel the pressure?. Science, 2015, 348, 1210-1211.	12.6	2
67	PALEOCLIMATE AND PALEOENVIRONMENTAL RECONSTRUCTION OF THE EARLY MIOCENE TINDERET SITES IN WESTERN KENYA AND THEIR IMPLICATIONS FOR HOMINOID EVOLUTION. , 2017, , .		2
68	Landscape evolution across the Cretaceous/Paleogene boundary in southwestern North Dakota, U.S.A Cretaceous Research, 2020, 112, 104470.	1.4	1
69	FIRST RECOGNITION OF CLIMATE HYPERTHERMALS IN THE LOWER PALEOCENE RECORD OF THE SAN JUAN BASIN, NEW MEXICO, USA. , 2016, , .		1
70	CLIMATIC AND DEPOSITIONAL HISTORY OF THE LOWER PALEOCENE UPPER NACIMIENTO FORMATION, SAN JUAN BASIN, NEW MEXICO. , 2016, , .		1
71	PALEOCLIMATE AND PALEOECOLOGY OF THE LATE EOCENE FLORISSANT FLORA USING DIGITAL LEAF PHYSIOGNOMY. , 2017, , .		1
72	PALEOCLIMATE RECONSTRUCTION AND THE PATTERN OF CLIMATE CHANGE AT EARLY PALEOCENE FROM LEAF PHYSIOGNOMY AT SAN JUAN BASIN, NEW MEXICO FOLLOWING THE CRETACEOUS-PALEOGENE BOUNDARY. , 2018, , .		1

#	Article	IF	CITATIONS
73	Unexpected Convergent Evolution of Nasal Domes between Pleistocene Bovids and Cretaceous Hadrosaur Dinosaurs. Current Biology, 2016, 26, 556.	3.9	0
74	Ecomorphology and ecology of the grassland specialist, <i>Rusingoryx atopocranion</i> (Artiodactyla: Bovidae), from the late Pleistocene of western Kenya – Erratum. Quaternary Research, 2022, 105, 241-242.	1.7	0