Lander Baeten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9222443/publications.pdf

Version: 2024-02-01

71061 66879 6,909 123 41 78 citations h-index g-index papers 126 126 126 9115 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Microclimate moderates plant responses to macroclimate warming. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18561-18565.	3.3	523
2	Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19456-19459.	3.3	464
3	Forest microclimate dynamics drive plant responses to warming. Science, 2020, 368, 772-775.	6.0	385
4	Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecology Letters, 2017, 20, 1414-1426.	3.0	244
5	Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests. Journal of Ecology, 2012, 100, 352-365.	1.9	214
6	Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio, 2016, 45, 29-41.	2.8	203
7	Biotic homogenization can decrease landscape-scale forest multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3557-3562.	3.3	196
8	The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQq0	0 0 rgBT /	Overlock 10 T
9	Jack-of-all-trades effects drive biodiversity–ecosystem multifunctionality relationships in European forests. Nature Communications, 2016, 7, 11109.	5.8	185
10	A novel comparative research platform designed to determine the functional significance of tree species diversity in European forests. Perspectives in Plant Ecology, Evolution and Systematics, 2013, 15, 281-291.	1.1	179
11	Plant Biodiversity Change Across Scales During the Anthropocene. Annual Review of Plant Biology, 2017, 68, 563-586.	8.6	179
12	The <scp>PREDICTS</scp> database: a global database of how local terrestrial biodiversity responds to human impacts. Ecology and Evolution, 2014, 4, 4701-4735.	0.8	178
13	Global environmental change effects on ecosystems: the importance of landâ€use legacies. Global Change Biology, 2016, 22, 1361-1371.	4.2	148
14	Support for the habitat amount hypothesis from a global synthesis of species density studies. Ecology Letters, 2020, 23, 674-681.	3.0	139
15	Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Global Change Biology, 2015, 21, 3726-3737.	4.2	124
16	For the sake of resilience and multifunctionality, let's diversify planted forests!. Conservation Letters, 2022, 15, e12829.	2.8	124
17	Management driven changes (1967–2005) in soil acidity and the understorey plant community following conversion of a coppice-with-standards forest. Forest Ecology and Management, 2007, 241, 258-271.	1.4	117
18	Estimates of local biodiversity change over time stand up to scrutiny. Ecology, 2017, 98, 583-590.	1.5	106

#	Article	IF	CITATIONS
19	Diverging effects of overstorey conversion scenarios on the understorey vegetation in a former coppice-with-standards forest. Forest Ecology and Management, 2008, 256, 519-528.	1.4	96
20	Herb layer changes (1954â€2000) related to the conversion of coppiceâ€withâ€standards forest and soil acidification. Applied Vegetation Science, 2009, 12, 187-197.	0.9	96
21	Global environmental change effects on plant community composition trajectories depend upon management legacies. Global Change Biology, 2018, 24, 1722-1740.	4.2	93
22	Combining Biodiversity Resurveys across Regions to Advance Global Change Research. BioScience, 2017, 67, 73-83.	2.2	89
23	Tree diversity is key for promoting the diversity and abundance of forestâ€associated taxa in Europe. Oikos, 2020, 129, 133-146.	1.2	80
24	Beyond plant–soil feedbacks: mechanisms driving plant community shifts due to landâ€use legacies in postâ€agricultural forests. Functional Ecology, 2016, 30, 1073-1085.	1.7	76
25	Four decades of post-agricultural forest development have caused major redistributions of soil phosphorus fractions. Oecologia, 2012, 169, 221-234.	0.9	75
26	Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality. Ecology Letters, 2018, 21, 31-42.	3.0	74
27	Low recruitment across life stages partly accounts for the slow colonization of forest herbs. Journal of Ecology, 2009, 97, 109-117.	1.9	72
28	Unexpected understorey community development after 30â€fyears in ancient and postâ€agricultural forests. Journal of Ecology, 2010, 98, 1447-1453.	1.9	70
29	Replacements of small- by large-ranged species scale up to diversity loss in Europe's temperate forest biome. Nature Ecology and Evolution, 2020, 4, 802-808.	3.4	67
30	Environmental limitation contributes to the differential colonization capacity of two forest herbs. Journal of Vegetation Science, 2009, 20, 209-223.	1.1	66
31	Distinguishing between turnover and nestedness in the quantification of biotic homogenization. Biodiversity and Conservation, 2012, 21, 1399-1409.	1.2	62
32	Throughfall deposition and canopy exchange processes along a vertical gradient within the canopy of beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst). Science of the Total Environment, 2012, 420, 168-182.	3.9	62
33	Tree Species Identity Shapes Earthworm Communities. Forests, 2017, 8, 85.	0.9	60
34	Local habitat and landscape affect Ixodes ricinus tick abundances in forests on poor, sandy soils. Forest Ecology and Management, 2012, 265, 30-36.	1.4	59
35	Identifying the tree species compositions that maximize ecosystem functioning in European forests. Journal of Applied Ecology, 2019, 56, 733-744.	1.9	58
36	How tree species identity and diversity affect light transmittance to the understory in mature temperate forests. Ecology and Evolution, 2017, 7, 10861-10870.	0.8	56

#	Article	IF	CITATIONS
37	Inferring plant functional diversity from space: the potential of Sentinel-2. Remote Sensing of Environment, 2019, 233, 111368.	4.6	56
38	Early Trajectories of Spontaneous Vegetation Recovery after Intensive Agricultural Land Use. Restoration Ecology, 2010, 18, 379-386.	1.4	53
39	Observer and relocation errors matter in resurveys of historical vegetation plots. Journal of Vegetation Science, 2018, 29, 812-823.	1.1	51
40	Interregional variation in the floristic recovery of postâ€agricultural forests. Journal of Ecology, 2011, 99, 600-609.	1.9	50
41	Ecosystem services of mixed species forest stands and monocultures: comparing practitioners' and scientists' perceptions with formal scientific knowledge. Forestry, 2014, 87, 639-653.	1.2	44
42	An intraspecific application of the leaf-height-seed ecology strategy scheme to forest herbs along a latitudinal gradient. Ecography, 2011, 34, 132-140.	2.1	41
43	The effect of air pollution and other environmental stressors on leaf fluctuating asymmetry and specific leaf area of Salix alba L. Environmental Pollution, 2011, 159, 2405-2411.	3.7	39
44	Maintaining forest cover to enhance temperature buffering under future climate change. Science of the Total Environment, 2022, 810, 151338.	3.9	39
45	Directional turnover towards largerâ€ranged plants over time and across habitats. Ecology Letters, 2022, 25, 466-482.	3.0	39
46	Assessment of the functional role of tree diversity: the multi-site FORBIO experiment. Plant Ecology and Evolution, 2013, 146, 26-35.	0.3	38
47	Understorey vegetation shifts following the conversion of temperate deciduous forest to spruce plantation. Forest Ecology and Management, 2013, 289, 363-370.	1.4	37
48	The effects of local neighbourhood diversity on pest and disease damage of trees in a young experimental forest. Forest Ecology and Management, 2014, 334, 1-9.	1.4	35
49	Plasticity in response to phosphorus and light availability in four forest herbs. Oecologia, 2010, 163, 1021-1032.	0.9	34
50	Temporal changes in forest plant communities at different site types. Applied Vegetation Science, 2013, 16, 237-247.	0.9	32
51	Do diverse overstoreys induce diverse understoreys? Lessons learnt from an experimental–observational platform in Finland. Forest Ecology and Management, 2014, 318, 206-215.	1.4	32
52	Forest fragmentation modulates effects of tree species richness and composition on ecosystem multifunctionality. Ecology, 2019, 100, e02653.	1.5	32
53	Forest herbs in the face of global change: a single-species-multiple-threats approach for Anemone nemorosa. Plant Ecology and Evolution, 2010, 143, 19-30.	0.3	31
54	Mixing effects on litter decomposition rates in a young tree diversity experiment. Acta Oecologica, 2016, 70, 79-86.	0.5	31

#	Article	IF	Citations
55	Former land use affects the nitrogen and phosphorus concentrations and biomass of forest herbs. Plant Ecology, 2011, 212, 901-909.	0.7	30
56	Relating changes in understorey diversity to environmental drivers in an ancient forest in northern Belgium. Plant Ecology and Evolution, 2014, 147, 22-32.	0.3	30
57	<scp>BIOFRAG</scp> – a new database for analyzing <scp>BIO</scp> diversity responses to forest <scp>FRAG</scp> mentation. Ecology and Evolution, 2014, 4, 1524-1537.	0.8	29
58	Disentangling tree species identity and richness effects on the herb layer: first results from a German tree diversity experiment. Journal of Vegetation Science, 2015, 26, 742-755.	1.1	29
59	Disentangling dispersal from phylogeny in the colonization capacity of forest understorey plants. Journal of Ecology, 2015, 103, 175-183.	1.9	29
60	Herb litter mediates tree litter decomposition and soil fauna composition. Soil Biology and Biochemistry, 2021, 152, 108063.	4.2	29
61	Diversifying forest communities may change Lyme disease risk: extra dimension to the dilution effect in Europe. Parasitology, 2016, 143, 1310-1319.	0.7	28
62	17Âyears of grassland management leads to parallel local and regional biodiversity shifts among a wide range of taxonomic groups. Biodiversity and Conservation, 2017, 26, 717-734.	1.2	28
63	Tree species identity outweighs the effects of tree species diversity and forest fragmentation on understorey diversity and composition. Plant Ecology and Evolution, 2017, 150, 229-239.	0.3	28
64	The effects of hemiparasitic plant removal on community structure and seedling establishment in semiâ€natural grasslands. Journal of Vegetation Science, 2015, 26, 409-420.	1.1	27
65	Understorey removal effects on tree regeneration in temperate forests: A metaâ€analysis. Journal of Applied Ecology, 2021, 58, 9-20.	1.9	27
66	Shrub clearing adversely affects the abundance of Ixodes ricinus ticks. Experimental and Applied Acarology, 2013, 60, 411-420.	0.7	26
67	Prunus serotina unleashed: invader dominance after 70Âyears of forest development. Biological Invasions, 2010, 12, 1113-1124.	1.2	25
68	Experimental assessment of the survival and performance of forest herbs transplanted beyond their range limit. Basic and Applied Ecology, 2012, 13, 10-19.	1.2	25
69	Tree species diversity indirectly affects nutrient cycling through the shrub layer and its high-quality litter. Plant and Soil, 2018, 427, 335-350.	1.8	25
70	Tree regeneration responds more to shade casting by the overstorey and competition in the understorey than to abundance per se. Forest Ecology and Management, 2019, 450, 117492.	1.4	25
71	Biodiversity as insurance for sapling survival in experimental tree plantations. Journal of Applied Ecology, 2016, 53, 1777-1786.	1.9	24
72	Complex patterns in tolerance and resistance to pests and diseases underpin the domestication of tomato. New Phytologist, 2020, 226, 254-266.	3.5	24

#	Article	IF	Citations
73	Clear-felling effects on colonization rates of shade-tolerant forest herbs into a post-agricultural forest adjacent to ancient forest. Applied Vegetation Science, 2011, 14, 75-83.	0.9	22
74	Pâ€removal for restoration of <i>Nardus</i> grasslands on former agricultural land: cutting traditions. Restoration Ecology, 2017, 25, S178.	1.4	22
75	Forest floor leachate fluxes under six different tree species on a metal contaminated site. Science of the Total Environment, 2013, 447, 99-107.	3.9	21
76	Strength of forest edge effects on litterâ€dwelling macroâ€arthropods across Europe is influenced by forest age and edge properties. Diversity and Distributions, 2019, 25, 963-974.	1.9	21
77	A modelâ€based approach to studying changes in compositional heterogeneity. Methods in Ecology and Evolution, 2014, 5, 156-164.	2.2	19
78	Complementary distribution patterns of arthropod detritivores (woodlice and millipedes) along forest edgeâ€toâ€interior gradients. Insect Conservation and Diversity, 2016, 9, 456-469.	1.4	19
79	Soil properties and neighbouring forest cover affect aboveâ€ground biomass and functional composition during tropical forest restoration. Applied Vegetation Science, 2018, 21, 179-189.	0.9	19
80	Linking macrodetritivore distribution to desiccation resistance in small forest fragments embedded in agricultural landscapes in Europe. Landscape Ecology, 2018, 33, 407-421.	1.9	18
81	Contrasting vegetation change (1974–2015) in hedgerows and forests in an intensively used agricultural landscape. Applied Vegetation Science, 2019, 22, 269-281.	0.9	18
82	Light, temperature and understorey cover predominantly affect early life stages of tree seedlings in a multifactorial mesocosm experiment. Forest Ecology and Management, 2020, 461, 117907.	1.4	18
83	Nutrient input from hemiparasitic litter favors plant species with a fast-growth strategy. Plant and Soil, 2013, 371, 53-66.	1.8	17
84	Influence of canopy budget model approaches on atmospheric deposition estimates to forests. Biogeochemistry, 2013, 116, 215-229.	1.7	17
85	Competition, tree age and size drive the productivity of mixed forests of pedunculate oak, beech and red oak. Forest Ecology and Management, 2018, 430, 609-617.	1.4	17
86	Local neighbourhood effects on sapling growth in a young experimental forest. Forest Ecology and Management, 2017, 384, 424-443.	1.4	13
87	Direct and understorey-mediated indirect effects of human-induced environmental changes on litter decomposition in temperate forest. Soil Biology and Biochemistry, 2019, 138, 107579.	4.2	13
88	Does neighbourhood tree diversity affect the crown arthropod community in saplings?. Biodiversity and Conservation, 2016, 25, 169-185.	1.2	12
89	Soil carbon of hedgerows and †ghost†hedgerows. Agroforestry Systems, 2021, 95, 1087-1103.	0.9	12
90	Can soil acidity and light help to explain tree species effects on forest herb layer performance in post-agricultural forests?. Plant and Soil, 2013, 373, 183-199.	1.8	11

#	Article	IF	CITATIONS
91	Responses of competitive understorey species to spatial environmental gradients inaccurately explain temporal changes. Basic and Applied Ecology, 2018, 30, 52-64.	1.2	11
92	The seedling bank stabilizes the erratic early regeneration stages of the invasive <i>Prunus serotina </i> . Ecoscience, 2009, 16, 452-460.	0.6	10
93	The phosphorus legacy of former agricultural land use can affect the production of germinable seeds in forest herbs. Ecoscience, 2010, 17, 365-371.	0.6	10
94	Changes in the nature of environmental limitation in two forest herbs during two decades of forest succession. Journal of Vegetation Science, 2017, 28, 883-892.	1.1	10
95	Desiccation resistance determines distribution of woodlice along forest edge-to-interior gradients. European Journal of Soil Biology, 2018, 85, 1-3.	1.4	10
96	Biomass increment and carbon sequestration in hedgerow-grown trees. Dendrochronologia, 2021, 70, 125894.	1.0	10
97	Long-term scenarios of the invasive black cherry in pine-oak forest: Impact of regeneration success. Acta Oecologica, 2011, 37, 203-211.	0.5	9
98	Intraspecific variation in flowering phenology affects seed germinability in the forest herb Primula elatior. Plant Ecology and Evolution, 2015, 148, 283-288.	0.3	9
99	Habitat preferences of European Nightjars <i>Caprimulgus europaeus</i> in forests on sandy soils. Bird Study, 2011, 58, 120-129.	0.4	8
100	Quantifying establishment limitations during the ecological restoration of speciesâ€rich ⟨i⟩Nardus⟨ i⟩ grassland. Applied Vegetation Science, 2017, 20, 594-607.	0.9	8
101	Climatic conditions, not above- and belowground resource availability and uptake capacity, mediate tree diversity effects on productivity and stability. Science of the Total Environment, 2022, 812, 152560.	3.9	8
102	Soil phosphorus availability determines the contribution of small, individual grassland remnants to the conservation of landscapeâ€scale biodiversity. Applied Vegetation Science, 2021, 24, e12590.	0.9	7
103	Species ecological strategy and soil phosphorus supply interactively affect plant biomass and phosphorus concentration. Basic and Applied Ecology, 2022, 62, 1-11.	1.2	7
104	Understorey phylogenetic diversity in thermophilous deciduous forests: overstorey species identity can matter more than species richness. Forest Ecosystems, 2019, 6, .	1.3	6
105	Biodiversity on International Borders Requires Solid Inventories. BioScience, 2019, 69, 409-409.	2.2	6
106	Biomass Expansion Factors for Hedgerow-Grown Trees Derived from Terrestrial LiDAR. Bioenergy Research, 2021, 14, 561-574.	2.2	6
107	Forest herbs show species-specific responses to variation in light regime on sites with contrasting soil acidity: An experiment mimicking forest conversion scenarios. Basic and Applied Ecology, 2014, 15, 316-325.	1.2	5
108	Induced phenological avoidance: A neglected defense mechanism against seed predation in plants. Journal of Ecology, 2020, 108, 1115-1124.	1.9	5

#	Article	IF	CITATIONS
109	Temporal complementarity in activityâ€density of two arthropod macroâ€detritivore taxa. Insect Conservation and Diversity, 2021, 14, 455-463.	1.4	5
110	Early Tree Diversity and Composition Effects on Topsoil Chemistry in Young Forest Plantations Depend on Site Context. Ecosystems, 2021, 24, 1638-1653.	1.6	5
111	Soil heterogeneity in tree mixtures depends on spatial clustering of tree species. Basic and Applied Ecology, 2019, 39, 38-47.	1.2	4
112	Thermal differences between juveniles and adults increased over time in European forest trees. Journal of Ecology, 2021, 109, 3944-3957.	1.9	4
113	Intra-annual activity patterns of terrestrial isopods are tempered in forest compared to open habitat. Soil Biology and Biochemistry, 2021, 160, 108342.	4.2	4
114	Effects of Mineral Soil and Forest Floor on the Regeneration of Pedunculate Oak, Beech and Red Oak. Forests, 2018, 9, 66.	0.9	3
115	Forest edges reduce slug (but not snail) activity-density across Western Europe. Pedobiologia, 2019, 75, 34-37.	0.5	3
116	Overstorey composition shapes acrossâ€trophic level community relationships in deciduous forest regardless of fragmentation context. Journal of Ecology, 2021, 109, 1591-1606.	1.9	3
117	Flowering phenology and reproduction of a forest understorey plant species in response to the local environment. Plant Ecology, 2021, 222, 749-760.	0.7	3
118	Little effect of tree species richness on within―and betweenâ€plot variability in soil chemical properties in a young plantation forest. European Journal of Soil Science, 2022, 73, .	1.8	3
119	Response to Comment on "Forest microclimate dynamics drive plant responses to warming― Science, 2020, 370, .	6.0	3
120	Ecosystem multifunctionality lowers as grasslands under restoration approach their target habitat type. Restoration Ecology, 0, , .	1.4	3
121	Mixing of tree species is especially beneficial for biodiversity in fragmented landscapes, without compromising forest functioning. Journal of Applied Ecology, 2021, 58, 2903-2913.	1.9	2
122	Response to Comment on "Forest microclimate dynamics drive plant responses to warming― Science, 2020, 370, .	6.0	1
123	Win some, lose some: Mesocosm communities maintain community productivity despite lower phosphorus availability because of increased species diversity. Applied Vegetation Science, 2021, 24, e12599.	0.9	1