Liyong Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9221928/publications.pdf Version: 2024-02-01

LIVONC YUAN

#	Article	IF	CITATIONS
1	Uranium(VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chemical Engineering Journal, 2012, 210, 539-546.	6.6	402
2	Introduction of amino groups into acid-resistant MOFs for enhanced U(<scp>vi</scp>) sorption. Journal of Materials Chemistry A, 2015, 3, 525-534.	5.2	378
3	Enhanced Photocatalytic Removal of Uranium(VI) from Aqueous Solution by Magnetic TiO ₂ /Fe ₃ O ₄ and Its Graphene Composite. Environmental Science & Technology, 2017, 51, 5666-5674.	4.6	292
4	MOF-76: from a luminescent probe to highly efficient U ^{VI} sorption material. Chemical Communications, 2013, 49, 10415-10417.	2.2	257
5	Efficient U(VI) Reduction and Sequestration by Ti ₂ CT _{<i>x</i>} MXene. Environmental Science & Technology, 2018, 52, 10748-10756.	4.6	253
6	Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite. Journal of Hazardous Materials, 2015, 290, 26-33.	6.5	231
7	Excellent Selectivity for Actinides with a Tetradentate 2,9-Diamide-1,10-Phenanthroline Ligand in Highly Acidic Solution: A Hard–Soft Donor Combined Strategy. Inorganic Chemistry, 2014, 53, 1712-1720.	1.9	219
8	Loading Actinides in Multilayered Structures for Nuclear Waste Treatment: The First Case Study of Uranium Capture with Vanadium Carbide MXene. ACS Applied Materials & Interfaces, 2016, 8, 16396-16403.	4.0	214
9	Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chemical Communications, 2017, 53, 12084-12087.	2.2	198
10	U(VI) capture from aqueous solution by highly porous and stable MOFs: UiO-66 and its amine derivative. Journal of Radioanalytical and Nuclear Chemistry, 2016, 307, 269-276.	0.7	176
11	Photocatalytic reduction of uranium(VI) by magnetic ZnFe2O4 under visible light. Applied Catalysis B: Environmental, 2020, 267, 118688.	10.8	170
12	Defect engineering in metal–organic frameworks: a new strategy to develop applicable actinide sorbents. Chemical Communications, 2018, 54, 370-373.	2.2	167
13	Effective removal of U(VI) and Eu(III) by carboxyl functionalized MXene nanosheets. Journal of Hazardous Materials, 2020, 396, 122731.	6.5	166
14	Effective Removal of Anionic Re(VII) by Surface-Modified Ti ₂ CT _{<i>x</i>} MXene Nanocomposites: Implications for Tc(VII) Sequestration. Environmental Science & Technology, 2019, 53, 3739-3747.	4.6	163
15	Extending the Use of Highly Porous and Functionalized MOFs to Th(IV) Capture. ACS Applied Materials & Interfaces, 2017, 9, 25216-25224.	4.0	158
16	High performance of phosphonate-functionalized mesoporous silica for U(vi) sorption from aqueous solution. Dalton Transactions, 2011, 40, 7446.	1.6	152
17	A novel mesoporous material for uranium extraction, dihydroimidazole functionalized SBA-15. Journal of Materials Chemistry, 2012, 22, 17019.	6.7	128
18	Nanolayered Ti ₃ C ₂ and SrTiO ₃ Composites for Photocatalytic Reduction and Removal of Uranium(VI). ACS Applied Nano Materials, 2019, 2, 2283-2294.	2.4	119

#	Article	IF	CITATIONS
19	Recent advances in computational modeling and simulations on the An(III)/Ln(III) separation process. Coordination Chemistry Reviews, 2012, 256, 1406-1417.	9.5	117
20	Adsorption of uranyl species on hydroxylated titanium carbide nanosheet: A first-principles study. Journal of Hazardous Materials, 2016, 308, 402-410.	6.5	115
21	Aryl Diazonium-Assisted Amidoximation of MXene for Boosting Water Stability and Uranyl Sequestration via Electrochemical Sorption. ACS Applied Materials & Interfaces, 2020, 12, 15579-15587.	4.0	115
22	Introduction of Bifunctional Groups into Mesoporous Silica for Enhancing Uptake of Thorium(IV) from Aqueous Solution. ACS Applied Materials & Interfaces, 2014, 6, 4786-4796.	4.0	113
23	Theoretical Insights on the Interaction of Uranium with Amidoxime and Carboxyl Groups. Inorganic Chemistry, 2014, 53, 9466-9476.	1.9	103
24	Radiation Controllable Synthesis of Robust Covalent Organic Framework Conjugates for Efficient Dynamic Column Extraction of 99TcO4â ^{~'} . CheM, 2020, 6, 2796-2809.	5.8	103
25	Trivalent Actinide and Lanthanide Separations by Tetradentate Nitrogen Ligands: A Quantum Chemistry Study. Inorganic Chemistry, 2011, 50, 9230-9237.	1.9	96
26	Understanding the Bonding Nature of Uranyl Ion and Functionalized Graphene: A Theoretical Study. Journal of Physical Chemistry A, 2014, 118, 2149-2158.	1.1	96
27	Simultaneous elimination of cationic uranium(<scp>vi</scp>) and anionic rhenium(<scp>vii</scp>) by graphene oxide–poly(ethyleneimine) macrostructures: a batch, XPS, EXAFS, and DFT combined study. Environmental Science: Nano, 2018, 5, 2077-2087.	2.2	95
28	Highly efficient adsorption and immobilization of U(VI) from aqueous solution by alkalized MXene-supported nanoscale zero-valent iron. Journal of Hazardous Materials, 2021, 408, 124949.	6.5	95
29	A high efficient sorption of U(VI) from aqueous solution using amino-functionalized SBA-15. Journal of Radioanalytical and Nuclear Chemistry, 2012, 292, 803-810.	0.7	92
30	Sorption of Eu(III) on MXene-derived titanate structures: The effect of nano-confined space. Chemical Engineering Journal, 2019, 370, 1200-1209.	6.6	91
31	Exploring Actinide Materials Through Synchrotron Radiation Techniques. Advanced Materials, 2014, 26, 7807-7848.	11.1	89
32	Anion-adaptive crystalline cationic material for 99TcO4â^' trapping. Nature Communications, 2019, 10, 1532.	5.8	87
33	Theoretical insights into the uranyl adsorption behavior on vanadium carbide MXene. Applied Surface Science, 2017, 426, 572-578.	3.1	83
34	Efficient removal of caesium ions from aqueous solution using a calix crown ether in ionic liquids: mechanism and radiation effect. Dalton Transactions, 2010, 39, 3897.	1.6	79
35	Evaluation of the Electroextractions of Ce and Nd from LiCl-KCl Molten Salt Using Liquid Ga Electrode. Journal of the Electrochemical Society, 2017, 164, D169-D178.	1.3	76
36	Carboxylated UiO-66 Tailored for U(VI) and Eu(III) Trapping: From Batch Adsorption to Dynamic Column Separation. ACS Applied Materials & Interfaces, 2021, 13, 16300-16308.	4.0	74

#	Article	IF	CITATIONS
37	Mesoporous silica SBA-15 functionalized with phosphonate and amino groups for uranium uptake. Science China Chemistry, 2012, 55, 1705-1711.	4.2	73
38	Density Functional Theory Studies of UO ₂ ²⁺ and NpO ₂ ⁺ Complexes with CarbamoyImethyIphosphine Oxide Ligands. Inorganic Chemistry, 2013, 52, 196-203.	1.9	73
39	Theoretical Investigation on Multiple Bonds in Terminal Actinide Nitride Complexes. Inorganic Chemistry, 2014, 53, 9607-9614.	1.9	73
40	Density functional theory investigations of the trivalent lanthanide and actinide extraction complexes with diglycolamides. Dalton Transactions, 2014, 43, 8713.	1.6	72
41	Large-Pore 3D Cubic Mesoporous (KIT-6) Hybrid Bearing a Hard–Soft Donor Combined Ligand for Enhancing U(VI) Capture: An Experimental and Theoretical Investigation. ACS Applied Materials & Interfaces, 2017, 9, 3774-3784.	4.0	70
42	Theoretically unraveling the separation of Am(<scp>iii</scp>)/Eu(<scp>iii</scp>): insights from mixed N,O-donor ligands with variations of central heterocyclic moieties. Physical Chemistry Chemical Physics, 2017, 19, 26969-26979.	1.3	69
43	Electrochemical extraction of samarium from LiCl-KCl melt by forming Sm-Zn alloys. Electrochimica Acta, 2014, 120, 369-378.	2.6	67
44	Electrochemical Properties of Uranium on the Liquid Gallium Electrode in LiCl-KCl Eutectic. Journal of the Electrochemical Society, 2016, 163, D554-D561.	1.3	65
45	Photocatalytic reduction of uranium(VI) under visible light with 2D/1D Ti3C2/CdS. Chemical Engineering Journal, 2021, 420, 129831.	6.6	64
46	Radiation Effects on Hydrophobic Ionic Liquid [C ₄ mim][NTf ₂] during Extraction of Strontium Ions. Journal of Physical Chemistry B, 2009, 113, 8948-8952.	1.2	63
47	Europium, uranyl, and thorium-phenanthroline amide complexes in acetonitrile solution: an ESI-MS and DFT combined investigation. Dalton Transactions, 2015, 44, 14376-14387.	1.6	63
48	Electrochemical behaviors of Dy(III) and its co-reduction with Al(III) in molten LiCl-KCl salts. Electrochimica Acta, 2014, 147, 87-95.	2.6	62
49	Quantum Chemistry Study of Uranium(VI), Neptunium(V), and Plutonium(IV,VI) Complexes with Preorganized Tetradentate Phenanthrolineamide Ligands. Inorganic Chemistry, 2014, 53, 10846-10853.	1.9	61
50	Highly selective extraction of Pu (IV) and Am (III) by N,N′-diethyl-N,N′-ditolyl-2,9-diamide-1,10-phenanthroline ligand: An experimental and theoretical study. Separation and Purification Technology, 2019, 223, 274-281.	3.9	59
51	Understanding the Interactions of Neptunium and Plutonium Ions with Graphene Oxide: Scalar-Relativistic DFT Investigations. Journal of Physical Chemistry A, 2014, 118, 10273-10280.	1.1	57
52	Interactions between Th(<scp>iv</scp>) and graphene oxide: experimental and density functional theoretical investigations. RSC Advances, 2014, 4, 3340-3347.	1.7	56
53	Actinide Separation Inspired by Self-Assembled Metal–Polyphenolic Nanocages. Journal of the American Chemical Society, 2020, 142, 16538-16545.	6.6	56
54	Influence of Î ³ -radiation on the ionic liquid [C4mim][PF6] during extraction of strontium ions. Dalton Transactions, 2008, , 6358.	1.6	52

#	Article	IF	CITATIONS
55	A new solvent system containing N,N′-diethyl-N,N′-ditolyl-2,9-diamide-1,10-phenanthroline in 1-(trifluoromethyl)-3-nitrobenzene for highly selective UO 2 2+ extraction. Separation and Purification Technology, 2016, 168, 232-237.	3.9	52
56	Electroextraction of gadolinium from Gd2O3 in LiCl–KCl–AlCl3 molten salts. Electrochimica Acta, 2013, 109, 732-740.	2.6	51
57	Adsorption of Eu(III) and Th(IV) on three-dimensional graphene-based macrostructure studied by spectroscopic investigation. Environmental Pollution, 2019, 248, 82-89.	3.7	51
58	The first case of an actinide polyrotaxane incorporating cucurbituril: a unique â€~dragon-like' twist induced by a specific coordination pattern of uranium. Chemical Communications, 2014, 50, 3612-3615.	2.2	50
59	Complexation Behavior of Eu(III) and Am(III) with CMPO and Ph ₂ CMPO Ligands: Insights from Density Functional Theory. Inorganic Chemistry, 2013, 52, 10904-10911.	1.9	48
60	Solvent extraction of U(VI) by trioctylphosphine oxide using a room-temperature ionic liquid. Science China Chemistry, 2014, 57, 1432-1438.	4.2	48
61	Theoretical Insights into Preorganized Pyridylpyrazole-Based Ligands toward the Separation of Am(III)/Eu(III). Inorganic Chemistry, 2018, 57, 14810-14820.	1.9	48
62	Theoretical Insights into the Selective Extraction of Americium(III) over Europium(III) with Dithioamide-Based Ligands. Inorganic Chemistry, 2019, 58, 10047-10056.	1.9	48
63	Rational Construction of Porous Metal–Organic Frameworks for Uranium(VI) Extraction: The Strong Periodic Tendency with a Metal Node. ACS Applied Materials & Interfaces, 2020, 12, 14087-14094.	4.0	48
64	Thermodynamic Study on the Complexation of Am(III) and Eu(III) with Tetradentate Nitrogen Ligands: A Probe of Complex Species and Reactions in Aqueous Solution. Journal of Physical Chemistry A, 2012, 116, 504-511.	1.1	46
65	New insights into the selectivity of four 1,10-phenanthroline-derived ligands toward the separation of trivalent actinides and lanthanides: a DFT based comparison study. Dalton Transactions, 2016, 45, 8107-8117.	1.6	46
66	Electrochemical behavior of La(III) on the zinc-coated W electrode in LiCl-KCl eutectic. Electrochimica Acta, 2015, 168, 206-215.	2.6	45
67	Supramolecular inclusion-based molecular integral rigidity: a feasible strategy for controlling the structural connectivity of uranyl polyrotaxane networks. Chemical Communications, 2015, 51, 11990-11993.	2.2	44
68	Silver Ion-Mediated Heterometallic Three-Fold Interpenetrating Uranyl–Organic Framework. Inorganic Chemistry, 2015, 54, 10934-10945.	1.9	44
69	Electrochemical and thermodynamic properties of Nd (III)/Nd (0) couple at liquid Zn electrode in LiCl-KCl melt. Electrochimica Acta, 2016, 191, 1026-1036.	2.6	44
70	Layered structure-based materials: challenges and opportunities for radionuclide sequestration. Environmental Science: Nano, 2020, 7, 724-752.	2.2	44
71	Probing the Influence of Phosphonate Bonding Modes to Uranium(VI) on Structural Topology and Stability: A Complementary Experimental and Computational Investigation. Inorganic Chemistry, 2015, 54, 3864-3874.	1.9	43
72	Electrochemical Extraction of Cerium by Forming Ce-Zn Alloys in LiCl-KCl Eutectic on W and Liquid Zn Electrodes. Journal of the Electrochemical Society, 2015, 162, E179-E184.	1.3	43

#	Article	IF	CITATIONS
73	Nanomaterials and nanotechnologies in nuclear energy chemistry. Radiochimica Acta, 2012, 100, 727-736.	0.5	42
74	Identification of the radiolytic product of hydrophobic ionic liquid [C4mim][NTf2] during removal of Sr2+ from aqueous solution. Dalton Transactions, 2009, , 7873.	1.6	41
75	Coordination of Eu(III) with 1,10-Phenanthroline-2,9-dicarboxamide Derivatives: A Combined Study by MS, TRLIF, and DFT. Inorganic Chemistry, 2019, 58, 10239-10247.	1.9	41
76	Direct separation of uranium from lanthanides (La, Nd, Ce, Sm) in oxide mixture in LiCl-KCl eutectic melt. Electrochimica Acta, 2018, 275, 100-109.	2.6	39
77	A mixed-ligand strategy regulates thorium-based MOFs. Dalton Transactions, 2020, 49, 983-987.	1.6	39
78	Radiation-induced darkening of ionic liquid [C4mim][NTf2] and its decoloration. Radiation Physics and Chemistry, 2009, 78, 1133-1136.	1.4	38
79	A facile additive-free method for tunable fabrication of UO2 and U3O8 nanoparticles in aqueous solution. CrystEngComm, 2014, 16, 2645.	1.3	38
80	Terminal U≡E (E = N, P, As, Sb, and Bi) Bonds in Uranium Complexes: A Theoretical Perspective. Journal of Physical Chemistry A, 2015, 119, 922-930.	1.1	38
81	Ordered Entanglement in Actinide-Organic Coordination Polymers. Bulletin of the Chemical Society of Japan, 2018, 91, 554-562.	2.0	38
82	First-principles study of water adsorption and dissociation on the UO2 (1 1 1), (1 1 0) and (1 0 0) surfaces. Journal of Nuclear Materials, 2014, 454, 446-454.	1.3	36
83	In-situ anodic precipitation process for highly efficient separation of aluminum alloys. Nature Communications, 2021, 12, 5777.	5.8	36
84	Electroextraction of samarium from Sm2O3 in chloride melts. Electrochimica Acta, 2014, 129, 401-409.	2.6	35
85	A Quasi-relativistic Density Functional Theory Study of the Actinyl(VI, V) (An = U, Np, Pu) Complexes with a Six-Membered Macrocycle Containing Pyrrole, Pyridine, and Furan Subunits. Journal of Physical Chemistry A, 2015, 119, 9178-9188.	1.1	35
86	Visible‣ightâ€Enabled Câ^'H Functionalization by a Direct Hydrogen Atom Transfer Uranyl Photocatalyst. Chemistry - A European Journal, 2020, 26, 16521-16529.	1.7	35
87	Theoretical insights into the separation of Am(<scp>iii</scp>) over Eu(<scp>iii</scp>) with PhenBHPPA. Dalton Transactions, 2015, 44, 16737-16745.	1.6	34
88	Hydrophilic Sulfonated 2,9-Diamide-1,10-phenanthroline Endowed with a Highly Effective Ligand for Separation of Americium(III) from Europium(III): Extraction, Spectroscopy, and Density Functional Theory Calculations. Inorganic Chemistry, 2021, 60, 357-365.	1.9	34
89	Porous Cationic Electrospun Fibers with Sufficient Adsorption Sites for Effective and Continuous ⁹⁹ TcO ₄ ^{â^²} Uptake. Advanced Functional Materials, 2022, 32, .	7.8	34
90	Electroseparation of thorium from ThO2 and La2O3 by forming Th-Al alloys in LiCl-KCl eutectic. Electrochimica Acta, 2015, 158, 277-286.	2.6	33

#	Article	IF	CITATIONS
91	Supramolecular Host–Guest Inclusion for Distinguishing Cucurbit[7]urilâ€Based Pseudorotaxanes from Smallâ€Molecule Ligands in Coordination Assembly with a Uranyl Center. Chemistry - A European Journal, 2017, 23, 13995-14003.	1.7	33
92	Towards understanding the correlation between UO22+ extraction and substitute groups in 2,9-diamide-1,10-phenanthroline. Science China Chemistry, 2018, 61, 1285-1292.	4.2	33
93	Theoretical insights into selective separation of trivalent actinide and lanthanide by ester and amide ligands based on phenanthroline skeleton. Dalton Transactions, 2020, 49, 4093-4099.	1.6	33
94	Electrochemical extraction of cerium from CeO2 assisted by AlCl3 in molten LiCl-KCl. Electrochimica Acta, 2014, 147, 385-391.	2.6	32
95	Insight into the Extraction Mechanism of Americium(III) over Europium(III) with Pyridylpyrazole: A Relativistic Quantum Chemistry Study. Journal of Physical Chemistry A, 2018, 122, 4499-4507.	1.1	32
96	Efficient Photocatalytic Reduction of Aqueous Perrhenate and Pertechnetate. Environmental Science & Technology, 2019, 53, 10917-10925.	4.6	32
97	Influence of Î ³ -radiation on room-temperature ionic liquid [bmim][PF6] in the presence of nitric acid. Radiation Physics and Chemistry, 2009, 78, 737-739.	1.4	31
98	Identification of radiolytic products of [C4mim][NTf2] and their effects on the Sr2+ extraction. Dalton Transactions, 2013, 42, 4299.	1.6	31
99	Size-tunable synthesis of monodisperse thorium dioxide nanoparticles and their performance on the adsorption of dye molecules. CrystEngComm, 2014, 16, 10469-10475.	1.3	31
100	Electrochemical formation of erbium-aluminum alloys from erbia in the chloride melts. Electrochimica Acta, 2014, 116, 434-441.	2.6	31
101	Theoretical studies on the AnO ₂ ⁿ⁺ (An = U, Np; n = 1, 2) complexes with di-(2-ethylhexyl)phosphoric acid. Dalton Transactions, 2015, 44, 3227-3236.	1.6	31
102	Co-reduction behaviors of lanthanum and aluminium ions in LiCl-KCl eutectic. Electrochimica Acta, 2014, 147, 104-113.	2.6	30
103	Extraction of thorium from LiCl–KCl molten salts by forming Al–Th alloys: a new pyrochemical method for the reprocessing of thorium-based spent fuels. RSC Advances, 2013, 3, 23539.	1.7	29
104	Thermodynamic and electrochemical properties of holmium and HoxAly intermetallic compounds in the LiCl-KCl eutectic. Electrochimica Acta, 2015, 174, 15-25.	2.6	29
105	Electrochemical Properties of Lanthanum on the Liquid Gallium Electrode in LiCl-KCl Eutectic. Journal of the Electrochemical Society, 2016, 163, D750-D756.	1.3	29
106	Releasing Metal-Coordination Capacity of Cucurbit[6]uril Macrocycle in Pseudorotaxane Ligands for the Construction of Interwoven Uranyl–Rotaxane Coordination Polymers. Inorganic Chemistry, 2018, 57, 13513-13523.	1.9	29
107	Electrochemical separation of Th from ThO2 and Eu2O3 assisted by AlCl3 in molten LiCl–KCl. Electrochimica Acta, 2013, 114, 180-188	2.6	28
108	Theoretical Prediction of the Potential Applications of Phenanthroline Derivatives in Separation of Transplutonium Elements. Inorganic Chemistry, 2020, 59, 11469-11480.	1.9	28

#	Article	IF	CITATIONS
109	Strong Periodic Tendency of Trivalent Lanthanides Coordinated with a Phenanthroline-Based Ligand: Cascade Countercurrent Extraction, Spectroscopy, and Crystallography. Inorganic Chemistry, 2021, 60, 9745-9756.	1.9	28
110	Tetranuclear Uranyl Polyrotaxanes: Preferred Selectivity toward Uranyl Tetramer for Stabilizing a Flexible Polyrotaxane Chain Exhibiting Weakened Supramolecular Inclusion. Chemistry - A European Journal, 2015, 21, 10226-10235.	1.7	27
111	Diffusion Coefficient of Ho3+at Liquid zinc Electrode and Co-reduction Behaviors of Ho3+ and Zn2+ on W Electrode in the LiCl-KCl Eutectic. Electrochimica Acta, 2016, 211, 313-321.	2.6	27
112	Uranyl Compounds Involving a Weakly Bonded Pseudorotaxane Linker: Combined Effect of pH and Competing Ligands on Uranyl Coordination and Speciation. Inorganic Chemistry, 2019, 58, 3271-3282.	1.9	27
113	Superhydrophobic Phosphonium Modified Robust 3D Covalent Organic Framework for Preferential Trapping of Charge Dispersed Oxoanionic Pollutants. Advanced Functional Materials, 2022, 32, .	7.8	27
114	Electrochemical reactions of the Th4+/Th couple on the tungsten, aluminum and bismuth electrodes in chloride molten salt. Electrochimica Acta, 2014, 130, 650-659.	2.6	26
115	Electroreduction of Gd3+on W and Zn Electrodes in LiCl–KCl Eutectic: A Comparison Study. Journal of the Electrochemical Society, 2015, 162, D531-D539.	1.3	25
116	Mixed-Ligand Uranyl Polyrotaxanes Incorporating a Sulfate/Oxalate Coligand: Achieving Structural Diversity via pH-Dependent Competitive Effect. Inorganic Chemistry, 2017, 56, 3227-3237.	1.9	25
117	Co-reduction behaviors of Ce (III), Al (III) and Ga (III) on a W electrode: An exploration for liquid binary Al-Ga cathode. Electrochimica Acta, 2019, 319, 869-877.	2.6	25
118	Theoretical Study on Unsupported Uranium–Metal Bonding in Uranium–Group 8 Complexes. Organometallics, 2018, 37, 3678-3686.	1.1	24
119	Towards understanding the color change of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide during gamma irradiation: an experimental and theoretical study. Physical Chemistry Chemical Physics, 2014, 16, 18729-18735.	1.3	23
120	Copper/Zinc-Directed Heterometallic Uranyl-Organic Polycatenating Frameworks: Synthesis, Characterization, and Anion-Dependent Structural Regulation. Inorganic Chemistry, 2016, 55, 10125-10134.	1.9	23
121	Theoretical studies on the synergistic extraction of Am ³⁺ and Eu ³⁺ with CMPO–HDEHP and CMPO–HEH[EHP] systems. Dalton Transactions, 2018, 47, 5474-5482.	1.6	23
122	Application of Binary Ga–Al Alloy Cathode in U Separation from Ce: The Possibility in Pyroprocessing of Spent Nuclear Fuel. Electrochimica Acta, 2020, 353, 136449.	2.6	23
123	Theoretical Insights into Modification of Nitrogen-Donor Ligands to Improve Performance on Am(III)/Eu(III) Separation. Inorganic Chemistry, 2020, 59, 3221-3231.	1.9	23
124	First principles modeling of zirconium solution in bulk UO2. Journal of Applied Physics, 2013, 113, .	1.1	22
125	Way to Enforce Selectivity via Steric Hindrance: Improvement of Am(III)/Eu(III) Solvent Extraction by Loaded Diphosphonic Acid Esters. Inorganic Chemistry, 2021, 60, 14563-14581.	1.9	22
126	First-principles DFT+U modeling of defect behaviors in anti-ferromagnetic uranium mononitride. Journal of Applied Physics, 2013, 114, .	1.1	21

#	Article	IF	CITATIONS
127	Solvent extraction of uranium(VI) by aÂdipicolinamide using aÂroom-temperature ionic liquid. Radiochimica Acta, 2014, 102, 87-92.	0.5	21
128	A neptunium(<scp>v</scp>)-mediated interwoven transuranium-rotaxane network incorporating a mechanically interlocked [<i>c</i> 2]daisy chain unit. Chemical Communications, 2018, 54, 8645-8648.	2.2	21
129	Selective Separation of Am(III)/Eu(III) by the QL-DAPhen Ligand under High Acidity: Extraction, Spectroscopy, and Theoretical Calculations. Inorganic Chemistry, 2021, 60, 19110-19119.	1.9	21
130	Templateâ€Free Synthesis and Mechanistic Study of Porous Threeâ€Dimensional Hierarchical Uraniumâ€Containing and Uranium Oxide Microspheres. Chemistry - A European Journal, 2014, 20, 12655-12662.	1.7	20
131	New Insight of Coordination and Extraction of Uranium(VI) with N-Donating Ligands in Room Temperature Ionic Liquids: <i>N</i> , <i>N</i> ′-Diethyl- <i>N</i> , <i>N</i> ′-ditolyldipicolinamide as a Case Study. Inorganic Chemistry, 2015, 54, 1992-1999.	1.9	20
132	Easily prepared and stable functionalized magnetic ordered mesoporous silica for efficient uranium extraction. Science China Chemistry, 2016, 59, 629-636.	4.2	20
133	Electrochemical behavior of praseodymium on the W and Al–Zn electrodes in LiCl–KCl eutectic: A comparison study. Electrochimica Acta, 2019, 326, 134971.	2.6	20
134	A new family of actinide sorbents with more open porous structure: Fibrous functionalized silica microspheres. Chemical Engineering Journal, 2020, 385, 123892.	6.6	20
135	Synthesis of ThO ₂ nanostructures through a hydrothermal approach: influence of hexamethylenetetramine (HMTA) and sodium dodecyl sulfate (SDS). RSC Advances, 2014, 4, 52209-52214.	1.7	19
136	Raman and Electrochemical Study of Zirconium in LiCl-KCl-LiF-ZrCl ₄ . Journal of the Electrochemical Society, 2018, 165, D6-D12.	1.3	19
137	A particularly simple NH4Cl-based method for the dissolution of UO2 and rare earth oxides in LiCl-KCl melt under air atmosphere. Journal of Nuclear Materials, 2018, 508, 63-73.	1.3	19
138	Confirmation and elimination of cyclic electrolysis of uranium ions in molten salts. Electrochemistry Communications, 2019, 103, 55-60.	2.3	19
139	<i>In situ</i> nitroso formation induced structural diversity of uranyl coordination polymers. Inorganic Chemistry Frontiers, 2019, 6, 775-785.	3.0	19
140	Robust covalent organic frameworks with tailor-made chelating sites for synergistic capture of U(<scp>vi</scp>) ions from highly acidic radioactive waste. Dalton Transactions, 2021, 50, 3792-3796.	1.6	19
141	Electroseparation of uranium from lanthanides (La, Ce, Pr, Nd and Sm) on liquid gallium electrode. Separation and Purification Technology, 2021, 265, 118524.	3.9	19
142	Selective separation of Am(III) from Eu(III) by 2,9-Bis(dialkyl-1,2,4-triazin-3-yl)-1,10-phenanthrolines: a relativistic quantum chemistry study. Radiochimica Acta, 2014, 102, 875-886.	0.5	18
143	Interactions between uranium(<scp>vi</scp>) and phosphopeptide: experimental and theoretical investigations. Dalton Transactions, 2016, 45, 14988-14997.	1.6	18
144	Complexation of trivalent lanthanides and actinides with diethylenetriaminepentaacetic acid: Theoretical unraveling of bond covalency. Journal of Molecular Liquids, 2020, 299, 112174.	2.3	18

#	Article	IF	CITATIONS
145	An Azobenzene-Modified Photoresponsive Thorium–Organic Framework: Monitoring and Quantitative Analysis of Reversible <i>trans–cis</i> Photoisomerization. Inorganic Chemistry, 2021, 60, 8519-8529.	1.9	18
146	Theoretical Insights into the Selective Separation of Am(III)/Eu(III) Using Hydrophilic Triazolyl-Based Ligands. Inorganic Chemistry, 2022, 61, 6110-6119.	1.9	18
147	First three-dimensional actinide polyrotaxane framework mediated by windmill-like six-connected oligomeric uranyl: dual roles of the pseudorotaxane precursor. Dalton Transactions, 2016, 45, 13304-13307.	1.6	17
148	Condition dependence of Zr electrochemical reactions and morphological evolution of Zr deposits in molten salt. Science China Chemistry, 2017, 60, 264-274.	4.2	17
149	Selective Separation and Coordination of Europium(III) and Americium(III) by Bisdiglycolamide Ligands: Solvent Extraction, Spectroscopy, and DFT Calculations. Inorganic Chemistry, 2020, 59, 14218-14228.	1.9	17
150	Selective separation between UO22+ and Pu4+ by novel tetradentate chelate phenanthroline diamide ligand in 1-octanol. Separation and Purification Technology, 2021, 277, 119521.	3.9	17
151	Two novel uranyl complexes of a semi-rigid aromatic tetracarboxylic acid supported by an organic base as an auxiliary ligand or a templating agent: an experimental and theoretical exploration. CrystEngComm, 2015, 17, 3031-3040.	1.3	16
152	Surface properties of NpO 2 and water reacting with stoichiometric and reduced NpO 2 (111), (110), and (100) surfaces from ab initio atomistic thermodynamics. Surface Science, 2016, 644, 153-164.	0.8	16
153	Temperature-induced reversible single-crystal-to-single-crystal isomerisation of uranyl polyrotaxanes: an exquisite case of coordination variability of the uranyl center. Dalton Transactions, 2017, 46, 7392-7396.	1.6	16
154	Separation of actinides from lanthanides associated with spent nuclear fuel reprocessing in China: current status and future perspectives. Radiochimica Acta, 2019, 107, 951-964.	0.5	16
155	The influence of Fâ^' ion on the electrochemical behavior and coordination properties of uranium in LiCl-KCl molten salt. Electrochimica Acta, 2022, 404, 139573.	2.6	16
156	High selectivity towards small copper ions by a preorganized phenanthroline-derived tetradentate ligand and new insight into the complexation mechanism. Dalton Transactions, 2014, 43, 12470-12473.	1.6	15
157	Theoretical insight into the binding affinity enhancement of serine with the uranyl ion through phosphorylation. RSC Advances, 2016, 6, 69773-69781.	1.7	15
158	An Unprecedented Twoâ€Fold Nested Superâ€Polyrotaxane: Sulfateâ€Directed Hierarchical Polythreading Assembly of Uranyl Polyrotaxane Moieties. Chemistry - A European Journal, 2016, 22, 11329-11338.	1.7	15
159	Direct Electrochemical Preparation of Ni-Zr Alloy from Mixture Oxides in LiCl Molten Salt. Journal of the Electrochemical Society, 2017, 164, D888-D894.	1.3	15
160	Preparation of γ-Uranium-Molybdenum Alloys by Electrochemical Reduction of Solid Oxides in LiCl Molten Salt. Journal of the Electrochemical Society, 2019, 166, D276-D282.	1.3	15
161	Facile Access to Uranium and Thorium Phosphaethynolate Complexes Supported by Tren: Experimental and Theoretical Study. Chinese Journal of Chemistry, 2021, 39, 2125-2131.	2.6	15
162	Theoretical Probing of Size-Selective Crown Ether Macrocycle Ligands for Transplutonium Element Separation. Inorganic Chemistry, 2022, 61, 4404-4413.	1.9	15

#	Article	IF	CITATIONS
163	Growth of Uranyl Hydroxide Nanowires and Nanotubes by the Electrodeposition Method and Their Transformation to One-Dimensional U3O8Nanostructures. European Journal of Inorganic Chemistry, 2014, 2014, 1158-1164.	1.0	14
164	Theoretical Investigation on Incorporation and Diffusion Properties of Xe in Uranium Mononitride. Journal of Physical Chemistry C, 2015, 119, 5783-5789.	1.5	14
165	Uranium chemical species in LiCl-KCl eutectic under different conditions for the dissolution of U3O8. Journal of Nuclear Materials, 2020, 542, 152475.	1.3	14
166	Theoretical Insights into Transplutonium Element Separation with Electronically Modulated Phenanthroline-Derived Bis-Triazine Ligands. Inorganic Chemistry, 2021, 60, 10267-10279.	1.9	14
167	Electrochemical extraction kinetics of Nd on reactive electrodes. Separation and Purification Technology, 2022, 281, 119853.	3.9	14
168	Rational Design of a Tripodal Ligand for U(IV): Synthesis and Characterization of a U–Cl Species and Insights into Its Reactivity. Organometallics, 2020, 39, 4069-4077.	1.1	13
169	Electrodeposition Mechanism of La ³⁺ on Al, Ga and Al-Ga Alloy Cathodes in LiCl-KCl Eutectic Salt. Journal of the Electrochemical Society, 2021, 168, 062511.	1.3	13
170	Enhancing the Am ³⁺ /Cm ³⁺ separation ability by weakening the binding affinity of N donor atoms: a comparative theoretical study of N, O combined extractants. Dalton Transactions, 2021, 50, 3559-3567.	1.6	13
171	Theoretical Insights into the Separation of Am(III)/Eu(III) by Hydrophilic Sulfonated Ligands. Inorganic Chemistry, 2021, 60, 16409-16419.	1.9	13
172	Metalâ€Carboxyl Helical Chain Secondary Units Supported Ionâ€Exchangeable Anionic Uranyl–Organic Framework. Chemistry - A European Journal, 2019, 25, 10309-10313.	1.7	12
173	Coordination behavior of uranyl with PDAM derivatives in solution: Combined study with ESI-MS and DFT. Journal of Molecular Liquids, 2020, 300, 112287.	2.3	12
174	Kinked-Helix Actinide Polyrotaxanes from Weakly Bound Pseudorotaxane Linkers with Variable Conformations. Inorganic Chemistry, 2020, 59, 4058-4067.	1.9	12
175	Double-Layer Nitrogen-Rich Two-Dimensional Anionic Uranyl–Organic Framework for Cation Dye Capture and Catalytic Fixation of Carbon Dioxide. Inorganic Chemistry, 2021, 60, 11485-11495.	1.9	12
176	First-Principles Study of Barium and Zirconium Stability in Uranium Mononitride Nuclear Fuels. Journal of Physical Chemistry C, 2014, 118, 14579-14585.	1.5	11
177	Incorporation of magnetism into the dihydroimidazole functionalized mesoporous silica for convenient U(VI) capture. Journal of Radioanalytical and Nuclear Chemistry, 2016, 308, 447-458.	0.7	11
178	Influence of complexing species on the extraction of trivalent actinides from lanthanides with CyMe4–BTBP: a theoretical study. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318, 1453-1463.	0.7	11
179	Quantum chemical studies of selective back-extraction of Am(III) from Eu(III) and Cm(III) with two hydrophilic 1,10-phenanthroline-2,9-bis-triazolyl ligands. Radiochimica Acta, 2020, 108, 517-526.	0.5	11
180	A simple and effective separation of UO2 and Ln2O3 assisted by NH4Cl in LiCl–KCl eutectic. Journal of Nuclear Materials, 2020, 532, 152049.	1.3	11

#	Article	IF	CITATIONS
181	Theoretical insights into the substitution effect of phenanthroline derivative ligands on the extraction of Mo (VI). Separation and Purification Technology, 2022, 280, 119817.	3.9	11
182	Facile construction of diverse diarylmethane scaffolds via uranyl-catalyzed 1,6-addition reaction. Tetrahedron Letters, 2020, 61, 152076.	0.7	11
183	Supramolecular Isomers of Coordinationâ€Directed Sideâ€Chain Polypseudorotaxanes Based on Trimeric Uranyl Oxalate Nodes. Chemistry - A European Journal, 2017, 23, 8380-8384.	1.7	10
184	Electrochemical properties of gadolinium on liquid gallium electrode in LiCl KCl eutectic. Journal of Rare Earths, 2018, 36, 656-661.	2.5	10
185	Template-Driven Assembly of Rare Hexameric Uranyl-Organic Rotaxane Networks Threaded on Dimeric Uranyl Chains. Crystal Growth and Design, 2018, 18, 3073-3081.	1.4	10
186	A Theoretical Study on Divalent Heavier Group 14 Complexes as Promising Donor Ligands for Building Uranium–Metal Bonds. Organometallics, 2019, 38, 1963-1972.	1.1	10
187	Temperatureâ€Triggered Structural Dynamics of Nonâ€Coordinating Guest Moieties in a Fluorescent Actinide Polyrotaxane Framework. Chemistry - A European Journal, 2021, 27, 8730-8736.	1.7	10
188	Nuclear and radiochemistry in China: present status and future perspectives. Radiochimica Acta, 2012, 100, 529-539.	0.5	9
189	Electrochemical Behaviors of Eu (III) on the Liquid Binary Al-Ga Alloy Cathode. Journal of the Electrochemical Society, 2019, 166, D882-D889.	1.3	9
190	A New Preorganized Metalloligand Linker for the Construction of Luminescent Coordination Polymers. Crystal Growth and Design, 2020, 20, 6966-6972.	1.4	9
191	Hydrolytically stable foamed HKUST-1@CMC composites realize high-efficient separation of U(VI). IScience, 2021, 24, 102982.	1.9	9
192	Electrochemical behavior of uranyl in ionic liquid 1-butyl-3-methylimidazolium chloride mixture with water. Journal of Radioanalytical and Nuclear Chemistry, 2014, 302, 281-288.	0.7	8
193	Electroreduction-based Tb extraction from Tb4O7 on different substrates: understanding Al–Tb alloy formation mechanism in LiCl–KCl melt. RSC Advances, 2015, 5, 69134-69142.	1.7	8
194	Kinetics process of Tb(III)/Tb couple at liquid Zn electrode and thermodynamic properties of Tb-Zn alloys formation. Science China Chemistry, 2017, 60, 813-821.	4.2	8
195	Noncomplexed Cucurbituril-Mediated Structural Evolution of Layered Uranyl Terephthalate Compounds. Inorganic Chemistry, 2020, 59, 943-955.	1.9	8
196	Viologenâ€Based Uranyl Coordination Polymers: Anionâ€Induced Structural Diversity and the Potential as a Fluorescent Probe. European Journal of Inorganic Chemistry, 2021, 2021, 5077-5084.	1.0	8
197	Separation of uranium from lanthanides (La, Sm) with sacrificial Li anode in LiCl-KCl eutectic salt. Separation and Purification Technology, 2022, 292, 121025.	3.9	8
198	Liquid Electrodes for An/Ln Separation in Pyroprocessing. Journal of the Electrochemical Society, 2021, 168, 032507.	1.3	7

#	Article	IF	CITATIONS
199	Pyridine-di-phosphonates as chelators for trivalent f-elements: kinetics, thermodynamic and interfacial study of Am(<scp>iii</scp>)/Eu(<scp>iii</scp>) solvent extraction. Dalton Transactions, 2022, 51, 11180-11192.	1.6	7
200	The radiolytic behavior and mechanism of calixarene crown ether under Î ³ -irradiation. Science Bulletin, 2013, 58, 1663-1669.	1.7	6
201	Synthesis of ordered mesoporous uranium dioxide by a nanocasting route. Radiochimica Acta, 2016, 104, 549-553.	0.5	6
202	Proximity Effect in Uranyl Coordination of the Cucurbit[6]uril-Bipyridinium Pseudorotaxane Ligand for Promoting Host–Guest Synergistic Chelating. Inorganic Chemistry, 2021, 60, 10522-10534.	1.9	6
203	Estimation of the composition of intermetallic compounds in LiCl–KCl molten salt by cyclic voltammetry. Faraday Discussions, 2016, 190, 387-398.	1.6	5
204	U(VI) Extraction by 8-hydroxyquinoline: a comparison study in ionic liquid and in dichloromethane. Radiochimica Acta, 2017, 105, 441-448.	0.5	5
205	Uranyl-catalyzed hydrosilylation of <i>para</i> -quinone methides: access to diarylmethane derivatives. Organic and Biomolecular Chemistry, 2021, 19, 1575-1579.	1.5	5
206	Theoretical insights into the possible applications of amidoxime-based adsorbents in neptunium and plutonium separation. Dalton Transactions, 2021, 50, 15576-15584.	1.6	5
207	Coordination-Adaptive Polydentate Pseudorotaxane Ligand for Capturing Multiple Uranyl Species. Inorganic Chemistry, 2022, , .	1.9	5
208	Thorium(IV) adsorption onto multilayered Ti ₃ C ₂ T _x MXene: a batch, X-ray diffraction and EXAFS combined study. Journal of Synchrotron Radiation, 2021, 28, 1709-1719.	1.0	4
209	Specific Fâ^' binding to phenyl ring of aromatic polymers. Journal of Fluorine Chemistry, 2009, 130, 959-965.	0.9	3
210	Synthesis of ordered mesoporous U ₃ O ₈ by a nanocasting route. Radiochimica Acta, 2014, 102, 813-816.	0.5	3
211	Interactions of phosphorylated cyclohexapeptides with uranyl: insights from experiments and theoretical calculations. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322, 677-689.	0.7	3
212	Controlling the secondary assembly of porous anionic uranyl–organic polyhedra through organic cationic templates. Dalton Transactions, 2021, 50, 4499-4503.	1.6	3
213	Electrochemical Behaviour and Chemical Species of Sm(II) in AlCl ₃ â€NaCl with Different Lewis Acidity. Chemistry - A European Journal, 2022, 28, .	1.7	3
214	Machine-Learning-Guided Identification of Coordination Polymer Ligands for Crystallizing Separation of Cs/Sr. ACS Applied Materials & amp; Interfaces, 2022, 14, 33076-33084.	4.0	3
215	Coordination-driven assembly of actinide-organic polyrotaxanes involving crown ether macrocycles. Organic Chemistry Frontiers, 2021, 8, 3686-3694.	2.3	2
216	Mixed-Ligand Uranyl Squarate Coordination Polymers: Structure Regulation and Redox Activity. Inorganic Chemistry, 2022, 61, 302-316.	1.9	2

#	Article	IF	CITATIONS
217	Modular Assembly of Isostructural Mixed-Ligand Uranyl Coordination Polymers Based on a Patterning Strategy. Inorganic Chemistry, 2022, 61, 10694-10704.	1.9	2
218	A Theoretical Study of Unsupported Uranium–Ruthenium Bonds Based on Tripodal Ligands. Organometallics, 2022, 41, 1304-1313.	1.1	0