
Helen E Blackwell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9221899/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of a Class of Small Molecule Inhibitors of the Sirtuin Family of NAD-dependent Deacetylases by Phenotypic Screening. Journal of Biological Chemistry, 2001, 276, 38837-38843.	1.6	482
2	Highly Efficient Synthesis of Covalently Cross-Linked Peptide Helices by Ring-Closing Metathesis. Angewandte Chemie - International Edition, 1998, 37, 3281-3284.	7.2	479
3	Small Molecule Inhibitors of Bacterial Quorum Sensing and Biofilm Formation. Journal of the American Chemical Society, 2005, 127, 12762-12763.	6.6	281
4	Structure–function relationships in peptoids: Recent advances toward deciphering the structural requirements for biological function. Organic and Biomolecular Chemistry, 2009, 7, 1508.	1.5	262
5	Modulation of Bacterial Quorum Sensing with Synthetic Ligands:  Systematic Evaluation of <i>N</i> -Acylated Homoserine Lactones in Multiple Species and New Insights into Their Mechanisms of Action. Journal of the American Chemical Society, 2007, 129, 13613-13625.	6.6	246
6	Expanding dialogues: from natural autoinducers to non-natural analogues that modulate quorum sensing in Gram-negative bacteria. Chemical Society Reviews, 2008, 37, 1432.	18.7	232
7	Ring-Closing Metathesis of Olefinic Peptides:Â Design, Synthesis, and Structural Characterization of Macrocyclic Helical Peptides. Journal of Organic Chemistry, 2001, 66, 5291-5302.	1.7	216
8	Local and Tunable n→π* Interactions Regulate Amide Isomerism in the Peptoid Backbone. Journal of the American Chemical Society, 2007, 129, 8928-8929.	6.6	195
9	New Strategies for the Design of Folded Peptoids Revealed by a Survey of Noncovalent Interactions in Model Systems. Journal of the American Chemical Society, 2009, 131, 16555-16567.	6.6	186
10	Extraordinarily Robust Polyproline Type I Peptoid Helices Generated <i>via</i> the Incorporation of α-Chiral Aromatic <i>N</i> -1-Naphthylethyl Side Chains. Journal of the American Chemical Society, 2011, 133, 15559-15567.	6.6	185
11	Diversity-Oriented Synthesis of Biaryl-Containing Medium Rings Using a One Bead/One Stock Solution Platform. Journal of the American Chemical Society, 2002, 124, 1354-1363.	6.6	168
12	SIR1, an Upstream Component in Auxin Signaling Identified by Chemical Genetics. Science, 2003, 301, 1107-1110.	6.0	158
13	Small Molecule Disruption of Quorum Sensing Cross-Regulation in <i>Pseudomonas aeruginosa</i> Causes Major and Unexpected Alterations to Virulence Phenotypes. Journal of the American Chemical Society, 2015, 137, 1510-1519.	6.6	142
14	Out of the oil bath and into the oven—microwave-assisted combinatorial chemistry heats up. Organic and Biomolecular Chemistry, 2003, 1, 1251-1255.	1.5	134
15	Chemical Genetic Approaches to Plant Biology. Plant Physiology, 2003, 133, 448-455.	2.3	132
16	Slippery Liquidâ€Infused Porous Surfaces that Prevent Microbial Surface Fouling and Kill Nonâ€Adherent Pathogens in Surrounding Media: A Controlled Release Approach. Advanced Functional Materials, 2016, 26, 3599-3611.	7.8	132
17	New and Unexpected Insights into the Modulation of LuxR-Type Quorum Sensing by Cyclic Dipeptides. ACS Chemical Biology, 2009, 4, 1051-1059.	1.6	124
18	2â€Aminobenzimidazole Derivatives Strongly Inhibit and Disperse <i>Pseudomonas aeruginosa</i> Biofilms. Angewandte Chemie - International Edition, 2012, 51, 5226-5229.	7.2	121

#	Article	IF	CITATIONS
19	Highly Potent Inhibitors of Quorum Sensing in Staphylococcus aureus Revealed Through a Systematic Synthetic Study of the Group-III Autoinducing Peptide. Journal of the American Chemical Society, 2013, 135, 7869-7882.	6.6	118
20	A one-bead, one-stock solution approach to chemical genetics: part 1. Chemistry and Biology, 2001, 8, 1167-1182.	6.2	117
21	N-Phenylacetanoyl-l-Homoserine Lactones Can Strongly Antagonize or Superagonize Quorum Sensing in Vibrio fischeri. ACS Chemical Biology, 2007, 2, 315-319.	1.6	108
22	Competition Studies Confirm Two Major Barriers That Can Preclude the Spread of Resistance to Quorum-Sensing Inhibitors in Bacteria. ACS Chemical Biology, 2014, 9, 2291-2299.	1.6	106
23	Comparative Analyses of <i>N</i> â€Acylated Homoserine Lactones Reveal Unique Structural Features that Dictate Their Ability to Activate or Inhibit Quorum Sensing. ChemBioChem, 2008, 9, 389-400.	1.3	105
24	Chemical probes of quorum sensing: from compound development to biological discovery. FEMS Microbiology Reviews, 2016, 40, 774-794.	3.9	105
25	Isovaleryl-homoserine lactone, an unusual branched-chain quorum-sensing signal from the soybean symbiont <i>Bradyrhizobium japonicum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16765-16770.	3.3	104
26	Attenuation of Quorum Sensing in the Pathogen <i>Acinetobacter baumannii</i> Using Non-native <i>N</i> -Acyl Homoserine Lactones. ACS Chemical Biology, 2012, 7, 1719-1728.	1.6	104
27	Small Molecules That Modulate Quorum Sensing and Control Virulence in <i>Pseudomonas aeruginosa</i> . Journal of Organic Chemistry, 2010, 75, 6737-6746.	1.7	103
28	A Peptoid Ribbon Secondary Structure. Angewandte Chemie - International Edition, 2013, 52, 5079-5084.	7.2	99
29	Tuning Peptoid Secondary Structure with Pentafluoroaromatic Functionality:Â A New Design Paradigm for the Construction of Discretely Folded Peptoid Structures. Journal of the American Chemical Society, 2006, 128, 14378-14387.	6.6	97
30	Plant Responses to Bacterial <i>N</i> -Acyl <scp>l</scp> -Homoserine Lactones are Dependent on Enzymatic Degradation to <scp>l</scp> -Homoserine. ACS Chemical Biology, 2014, 9, 1834-1845.	1.6	93
31	Evaluation of a focused library of N-aryl l-homoserine lactones reveals a new set of potent quorum sensing modulators. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5978-5981.	1.0	91
32	Control of Quorum Sensing by a Burkholderia pseudomallei Multidrug Efflux Pump. Journal of Bacteriology, 2007, 189, 4320-4324.	1.0	90
33	Thiolactone modulators of quorum sensing revealed through library design and screening. Bioorganic and Medicinal Chemistry, 2011, 19, 4820-4828.	1.4	87
34	Construction of Peptoids with All <i>Trans</i> -Amide Backbones and Peptoid Reverse Turns via the Tactical Incorporation of <i>N</i> -Aryl Side Chains Capable of Hydrogen Bonding. Journal of Organic Chemistry, 2010, 75, 6068-6078.	1.7	84
35	Expedient Synthesis and Design Strategies for New Peptoid Construction. Organic Letters, 2005, 7, 1521-1524.	2.4	83
36	Slippery Liquid-Infused Porous Surfaces that Prevent Bacterial Surface Fouling and Inhibit Virulence Phenotypes in Surrounding Planktonic Cells. ACS Infectious Diseases, 2016, 2, 509-517.	1.8	83

#	Article	IF	CITATIONS
37	Hitting the SPOT: small-molecule macroarrays advance combinatorial synthesis. Current Opinion in Chemical Biology, 2006, 10, 203-212.	2.8	82
38	A Comparative Analysis of Synthetic Quorum Sensing Modulators in <i>Pseudomonas aeruginosa</i> : New Insights into Mechanism, Active Efflux Susceptibility, Phenotypic Response, and Next-Generation Ligand Design. Journal of the American Chemical Society, 2015, 137, 14626-14639.	6.6	81
39	Chemical Genetics Reveals Environment-Specific Roles for Quorum Sensing Circuits in Pseudomonas aeruginosa. Cell Chemical Biology, 2016, 23, 361-369.	2.5	79
40	Design and Synthesis of Macrocyclic Peptomers as Mimics of a Quorum Sensing Signal from <i>Staphylococcus aureus</i> . Organic Letters, 2008, 10, 2329-2332.	2.4	76
41	Microwave-Accelerated SPOT-Synthesis on Cellulose Supports. Organic Letters, 2004, 6, 2019-2022.	2.4	73
42	Synthetic ligands that activate and inhibit a quorum-sensing regulator in Pseudomonas aeruginosa. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3072-3075.	1.0	67
43	Highly Stable, Amideâ€Bridged Autoinducing Peptide Analogues that Strongly Inhibit the AgrC Quorum Sensing Receptor in <i>Staphylococcus aureus</i> . Angewandte Chemie - International Edition, 2016, 55, 8913-8917.	7.2	59
44	Synthesis and biological evaluation of triazole-containing N-acyl homoserine lactones as quorum sensing modulators. Organic and Biomolecular Chemistry, 2013, 11, 938-954.	1.5	57
45	Discovery of Fluorescent Cyanopyridine and Deazalumazine Dyes Using Small Molecule Macroarrays. Organic Letters, 2006, 8, 1645-1648.	2.4	55
46	Identification of Unanticipated and Novel N-Acyl L-Homoserine Lactones (AHLs) Using a Sensitive Non-Targeted LC-MS/MS Method. PLoS ONE, 2016, 11, e0163469.	1.1	55
47	Small Molecule Macroarray Construction via Ugi Four-Component Reactions. Organic Letters, 2005, 7, 4455-4458.	2.4	52
48	Design and conformational analysis of peptoids containing <i>N</i> â€hydroxy amides reveals a unique sheetâ€like secondary structure. Biopolymers, 2011, 96, 604-616.	1.2	52
49	Active Efflux Influences the Potency of Quorum Sensing Inhibitors in <i>Pseudomonas aeruginosa</i> . ChemBioChem, 2014, 15, 435-442.	1.3	52
50	Synthesis and Characterization of Nitroaromatic Peptoids: Fine Tuning Peptoid Secondary Structure through Monomer Position and Functionality. Journal of Organic Chemistry, 2009, 74, 1440-1449.	1.7	50
51	Potent and Selective Synthetic Modulators of a Quorum Sensing Repressor in <i>Pseudomonas aeruginosa</i> Identified from Secondâ€Generation Libraries of Nâ€Acylated <scp>L</scp> â€Homoserine Lactones. ChemBioChem, 2011, 12, 942-949.	1.3	50
52	Design, synthesis, and biological evaluation of abiotic, non-lactone modulators of LuxR-type quorum sensing. Bioorganic and Medicinal Chemistry, 2011, 19, 4812-4819.	1.4	50
53	Potent and Selective Modulation of the RhlR Quorum Sensing Receptor by Using Nonâ€native Ligands: An Emerging Target for Virulence Control in <i>Pseudomonas aeruginosa</i> . ChemBioChem, 2015, 16, 2348-2356.	1.3	50
54	Structural Characterization of Native Autoinducing Peptides and Abiotic Analogues Reveals Key Features Essential for Activation and Inhibition of an AgrC Quorum Sensing Receptor in Staphylococcus aureus. Journal of the American Chemical Society, 2013, 135, 18436-18444.	6.6	49

#	Article	IF	CITATIONS
55	Attenuation of Virulence in Pathogenic Bacteria Using Synthetic Quorum-Sensing Modulators under Native Conditions on Plant Hosts. ACS Chemical Biology, 2011, 6, 1348-1356.	1.6	48
56	Efficient Synthesis and Evaluation of Quorum-Sensing Modulators Using Small Molecule Macroarrays. Organic Letters, 2009, 11, 4600-4603.	2.4	45
57	Rapid synthesis of diketopiperazine macroarrays via Ugi four-component reactions on planar solid supports. Chemical Communications, 2006, , 2884.	2.2	44
58	Structure–Function Analyses of a <i>Staphylococcus epidermidis</i> Autoinducing Peptide Reveals Motifs Critical for AgrC-type Receptor Modulation. ACS Chemical Biology, 2016, 11, 1982-1991.	1.6	44
59	Nanoporous Superhydrophobic Coatings that Promote the Extended Release of Water-Labile Quorum Sensing Inhibitors and Enable Long-Term Modulation of Quorum Sensing in <i>Staphylococcus aureus</i> . ACS Biomaterials Science and Engineering, 2015, 1, 1039-1049.	2.6	43
60	Characterization of structural elements in native autoinducing peptides and non-native analogues that permit the differential modulation of AgrC-type quorum sensing receptors in Staphylococcus aureus. Organic and Biomolecular Chemistry, 2016, 14, 113-121.	1.5	43
61	Periprosthetic bacterial biofilm and quorum sensing. Journal of Orthopaedic Research, 2018, 36, 2331-2339.	1.2	43
62	Structural and Biochemical Studies of Non-native Agonists of the LasR Quorum-Sensing Receptor Reveal an L3 Loop "Out―Conformation for LasR. Cell Chemical Biology, 2018, 25, 1128-1139.e3.	2.5	43
63	Simplified AlPâ€ll Peptidomimetics Are Potent Inhibitors of <i>Staphylococcus aureus</i> AgrC Quorum Sensing Receptors. ChemBioChem, 2017, 18, 413-423.	1.3	42
64	Mutational Analysis of the Quorum-Sensing Receptor LasR Reveals Interactions that Govern Activation and Inhibition by Nonlactone Ligands. Chemistry and Biology, 2014, 21, 1361-1369.	6.2	40
65	Chemical methods to interrogate bacterial quorum sensing pathways. Organic and Biomolecular Chemistry, 2012, 10, 8189.	1.5	38
66	Solid-Phase and Microwave-Assisted Syntheses of 2,5-Diketopiperazines:Small Molecules with Great Potential. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 857-876.	0.6	34
67	Interception of quorum sensing in Staphylococcus aureus: a new niche for peptidomimetics. Organic and Biomolecular Chemistry, 2006, 4, 1441.	1.5	33
68	Efficient synthesis of small molecule macroarrays: optimization of the macroarray synthesis platform and examination of microwave and conventional heating methods. Tetrahedron, 2006, 62, 4715-4727.	1.0	33
69	N-Methyl and peptoid scans of an autoinducing peptide reveal new structural features required for inhibition and activation of AgrC quorum sensing receptors in Staphylococcus aureus. Chemical Communications, 2014, 50, 3000-3003.	2.2	33
70	Mechanism of agonism and antagonism of the <i>Pseudomonas aeruginosa</i> quorum sensing regulator QscR with nonâ€native ligands. Molecular Microbiology, 2018, 108, 240-257.	1.2	33
71	Structure-Based Design and Biological Evaluation of Triphenyl Scaffold-Based Hybrid Compounds as Hydrolytically Stable Modulators of a LuxR-Type Quorum Sensing Receptor. ACS Infectious Diseases, 2016, 2, 32-38.	1.8	32
72	Surface Coatings that Promote Rapid Release of Peptideâ€Based AgrC Inhibitors for Attenuation of Quorum Sensing in <i>Staphylococcus aureus</i> . Advanced Healthcare Materials, 2014, 3, 97-105.	3.9	30

#	Article	IF	CITATIONS
73	Surface-mediated release of a synthetic small-molecule modulator of bacterial quorum sensing: Gradual release enhances activity. Chemical Communications, 2011, 47, 370-372.	2.2	29
74	Structure–Function Analyses of the <i>N</i> -Butanoyl <scp>I</scp> -Homoserine Lactone Quorum-Sensing Signal Define Features Critical to Activity in RhlR. ACS Chemical Biology, 2018, 13, 2655-2662.	1.6	29
75	Design, Synthesis, and Biochemical Characterization of Non-Native Antagonists of the <i>Pseudomonas aeruginosa</i> Quorum Sensing Receptor LasR with Nanomolar IC ₅₀ Values. ACS Infectious Diseases, 2020, 6, 649-661.	1.8	29
76	Efficient Construction of Diketopiperazine Macroarrays Through a Cyclative-Cleavage Strategy and Their Evaluation as Luminescence Inhibitors in the Bacterial SymbiontVibrio fischeri. ACS Combinatorial Science, 2009, 11, 1094-1099.	3.3	28
77	Chemical Interrogation of LuxR-type Quorum Sensing Receptors Reveals New Insights into Receptor Selectivity and the Potential for Interspecies Bacterial Signaling. ACS Chemical Biology, 2017, 12, 2457-2464.	1.6	28
78	Quorum Sensing in Bacterial Species that Use Degenerate Autoinducers Can Be Tuned by Using Structurally Identical Nonâ€native Ligands. ChemBioChem, 2011, 12, 138-147.	1.3	27
79	Nonwoven Polymer Nanofiber Coatings That Inhibit Quorum Sensing in <i>Staphylococcus aureus</i> : Toward New Nonbactericidal Approaches to Infection Control. ACS Infectious Diseases, 2017, 3, 271-280.	1.8	27
80	Simplified Autoinducing Peptide Mimetics with Single-Nanomolar Activity Against the <i>Staphylococcus aureus</i> AgrC Quorum Sensing Receptor. ACS Infectious Diseases, 2019, 5, 484-492.	1.8	26
81	Surfaceâ€Mediated Release of a Smallâ€Molecule Modulator of Bacterial Biofilm Formation: A Nonâ€Bactericidal Approach to Inhibiting Biofilm Formation in <i>Pseudomonas aeruginosa</i> . Advanced Healthcare Materials, 2013, 2, 993-1000.	3.9	25
82	Unraveling the contributions of hydrogen-bonding interactions to the activity of native and non-native ligands in the quorum-sensing receptor LasR. Organic and Biomolecular Chemistry, 2015, 13, 1453-1462.	1.5	25
83	A New Model for Transitioning Students from the Undergraduate Teaching Laboratory to the Research Laboratory. The Evolution of an Intermediate Organic Synthesis Laboratory Course. Journal of Chemical Education, 2006, 83, 1835.	1.1	24
84	<i>N</i> -Acyl <scp>l</scp> -Homocysteine Thiolactones Are Potent and Stable Synthetic Modulators of the RhlR Quorum Sensing Receptor in <i>Pseudomonas aeruginosa</i> . ACS Chemical Biology, 2019, 14, 186-191.	1.6	21
85	Rapid Identification of Antibacterial Agents Effective against Staphylococcus aureus Using Small-Molecule Macroarrays. Chemistry and Biology, 2007, 14, 351-357.	6.2	20
86	Interkingdom Responses to Bacterial Quorum Sensing Signals Regulate Frequency and Rate of Nodulation in Legume–Rhizobia Symbiosis. ChemBioChem, 2016, 17, 2199-2205.	1.3	18
87	Highly Stable, Amideâ€Bridged Autoinducing Peptide Analogues that Strongly Inhibit the AgrC Quorum Sensing Receptor in <i>Staphylococcus aureus</i> . Angewandte Chemie, 2016, 128, 9059-9063.	1.6	14
88	<i>N-</i> Acyl Homoserine Lactone Analog Modulators of the <i>Pseudomonas aeruginosa</i> Rhll Quorum Sensing Signal Synthase. ACS Chemical Biology, 2019, 14, 2305-2314.	1.6	13
89	Chemical Control of Quorum Sensing in <i>E.Âcoli</i> : Identification of Small Molecule Modulators of SdiA and Mechanistic Characterization of a Covalent Inhibitor. ACS Infectious Diseases, 2020, 6, 3092-3103.	1.8	13
90	Liquid Crystal Emulsions That Intercept and Report on Bacterial Quorum Sensing. ACS Applied Materials & Interfaces, 2020, 12, 29056-29065.	4.0	13

#	Article	IF	CITATIONS
91	Deciphering a protolanguage for bacteria–host communication. Nature Chemical Biology, 2008, 4, 452-454.	3.9	12
92	Nonâ€native acylated homoserine lactones reveal that <scp>LuxIR</scp> quorum sensing promotes symbiont stability. Environmental Microbiology, 2014, 16, 2623-2634.	1.8	12
93	Non-native autoinducer analogs capable of modulating the SdiA quorum sensing receptor in <i>Salmonella enterica</i> serovar Typhimurium. Beilstein Journal of Organic Chemistry, 2018, 14, 2651-2664.	1.3	12
94	Bacterial Quorum Sensing Signals Self-Assemble in Aqueous Media to Form Micelles and Vesicles: An Integrated Experimental and Molecular Dynamics Study. Journal of Physical Chemistry B, 2020, 124, 3616-3628.	1.2	12
95	Nonâ€native <i>N</i> â€Aroyl <scp>L</scp> â€Homoserine Lactones Are Potent Modulators of the Quorum Sensing Receptor RpaR in <i>Rhodopseudomonas palustris</i> . ChemBioChem, 2014, 15, 87-93.	1.3	11
96	A comparative study of non-native N-acyl l-homoserine lactone analogs in two Pseudomonas aeruginosa quorum sensing receptors that share a common native ligand yet inversely regulate virulence. Bioorganic and Medicinal Chemistry, 2018, 26, 5336-5342.	1.4	11
97	Small Molecule Macroarray Construction via Palladiumâ€Mediated CarbonCarbon Bondâ€Forming Reactions: Highly Efficient Synthesis and Screening of Stilbene Arrays. Chemistry - A European Journal, 2010, 16, 2692-2695.	1.7	10
98	Conformational Switch to a Î ² -Turn in a Staphylococcal Quorum Sensing Signal Peptide Causes a Dramatic Increase in Potency. Journal of the American Chemical Society, 2020, 142, 750-761.	6.6	10
99	Bacterial Quorum Sensing Signals Promote Large-Scale Remodeling of Lipid Membranes. Langmuir, 2021, 37, 9120-9136.	1.6	10
100	Slippery Antifouling Polymer Coatings Fabricated Entirely from Biodegradable and Biocompatible Components. ACS Applied Materials & Interfaces, 2022, 14, 17940-17949.	4.0	10
101	Synthesis and application of an N-acylated l-homoserine lactone derivatized affinity matrix for the isolation of quorum sensing signal receptors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5054-5057.	1.0	9
102	Selection of Appropriate Autoinducer Analogues for the Modulation of Quorum Sensing at the Host–Bacterium Interface. ACS Chemical Biology, 2018, 13, 3115-3122.	1.6	9
103	Improved Small-Molecule Macroarray Platform for the Rapid Synthesis and Discovery of Antibacterial Chalcones. ACS Combinatorial Science, 2011, 13, 175-180.	3.8	8
104	Microwave-Facilitated SPOT-Synthesis of Antibacterial Dipeptoids. ACS Combinatorial Science, 2017, 19, 715-737.	3.8	8
105	Omics Technologies to Understand Activation of a Biosynthetic Gene Cluster in <i>Micromonospora</i> sp. WMMB235: Deciphering Keyicin Biosynthesis. ACS Chemical Biology, 2019, 14, 1260-1270.	1.6	8
106	Non-Native Peptides Capable of Pan-Activating the <i>agr</i> Quorum Sensing System across Multiple Specificity Groups of <i>Staphylococcus epidermidis</i> . ACS Chemical Biology, 2021, 16, 1070-1078.	1.6	7
107	Sustained Release of a Synthetic Autoinducing Peptide Mimetic Blocks Bacterial Communication and Virulence <i>In Vivo</i> Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
108	Highly Efficient Synthesis of Covalently Cross-Linked Peptide Helices by Ring-Closing Metathesis. Angewandte Chemie - International Edition, 1998, 37, 3281-3284.	7.2	6

#	Article	IF	CITATIONS
109	Fabrication of Slippery Liquid-Infused Coatings in Flexible Narrow-Bore Tubing. ACS Applied Materials & Interfaces, 2021, 13, 55621-55632.	4.0	6
110	Identification of small molecules that strongly inhibit bacterial quorum sensing using a high-throughput lipid vesicle lysis assay. Cell Chemical Biology, 2022, 29, 605-614.e4.	2.5	6
111	Bacterial Crowd Control with Iron. Chemistry and Biology, 2005, 12, 721-723.	6.2	5
112	Expedient construction of small molecule macroarrays via sequential palladium- and copper-mediated reactions and their ex situ biological testing. Chemical Science, 2012, 3, 1555.	3.7	5
113	Liquid Crystal-Infused Porous Polymer Surfaces: A "Slippery―Soft Material Platform for the Naked-Eye Detection and Discrimination of Amphiphilic Species. ACS Applied Materials & Interfaces, 2021, 13, 33652-33663.	4.0	5
114	Potent modulation of the CepR quorum sensing receptor and virulence in a Burkholderia cepacia complex member using non-native lactone ligands. Scientific Reports, 2019, 9, 13449.	1.6	4
115	Interactions of Bacterial Quorum Sensing Signals with Model Lipid Membranes: Influence of Acyl Tail Structure on Multiscale Response. Langmuir, 2021, 37, 12049-12058.	1.6	3
116	Slippery nanoemulsion-infused porous surfaces (SNIPS): anti-fouling coatings that can host and sustain the release of water-soluble agents. Chemical Communications, 2021, 57, 12691-12694.	2.2	3
117	N-{(Aminocarbonyl)[(S)-4-nitrobenzyl]methyl}-N-{[(R)-cyclohexyl](cyclohexylaminocarbonyl)methyl}propanamide methanol solvate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o1892-o1894.	0.2	1
118	Out of the Oil Bath and into the Oven — Microwave-Assisted Combinatorial Chemistry Heats up ChemInform, 2003, 34, no.	0.1	0
119	The State of the Union Is Strong: a Review of ASM's 6th Conference on Cell-Cell Communication in Bacteria. Journal of Bacteriology, 2018, 200, .	1.0	0
120	Towards a panâ \in group activator of the quorum sensing system in the common pathogen Staphylococcus epidermidis. FASEB Journal, 2018, 32, 656.15.	0.2	0
121	Sustained Release of a Synthetic Autoinducing Peptide Mimetic Blocks Bacterial Communication and Virulence In Vivo. Angewandte Chemie, 0, , .	1.6	0