Shrikant R Mulay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9221725/publications.pdf

Version: 2024-02-01

88 6,032 41 75
papers citations h-index g-index

89 89 89 8413
all docs docs citations times ranked citing authors

#	Article	lF	Citations
1	Endoplasmic Reticulum Stress and Renin-Angiotensin System Crosstalk in Endothelial Dysfunction. Current Molecular Pharmacology, 2023, 16, 139-146.	0.7	2
2	Involvement of Inflammasome Components in Kidney Disease. Antioxidants, 2022, 11, 246.	2.2	19
3	An Imaging and Computational Algorithm for Efficient Identification and Quantification of Neutrophil Extracellular Traps. Cells, 2022, 11, 191.	1.8	10
4	Editorial: Negative Regulators of Innate Immunity and Their Role in Host Responses to Injury and Infection. Frontiers in Immunology, 2022, 13, 891919.	2.2	1
5	Editorial: Immune Regulation in Kidney Diseases: Importance, Mechanism and Translation. Frontiers in Medicine, 2021, 8, 616880.	1.2	O
6	Insights from a Pan India Sero-Epidemiological survey (Phenome-India Cohort) for SARS-CoV2. ELife, 2021, 10, .	2.8	21
7	6,7-Dihydroxycoumarin ameliorates crystal-induced necroptosis during crystal nephropathies by inhibiting MLKL phosphorylation. Life Sciences, 2021, 271, 119193.	2.0	7
8	Role of dietary modifications in the management of type 2 diabetic complications. Pharmacological Research, 2021, 168, 105602.	3.1	17
9	Advanced non-invasive diagnostic techniques for visualization and estimation of kidney fibrosis. Drug Discovery Today, 2021, 26, 2053-2063.	3.2	4
10	Expression Profiling of Tumor Necrosis Factor Superfamily Ligands mRNA in Healthy and Injured Murine Kidneys. Methods in Molecular Biology, 2021, 2248, 231-241.	0.4	0
11	The gut-liver-kidney axis: Novel regulator of fatty liver associated chronic kidney disease. Pharmacological Research, 2020, 152, 104617.	3.1	50
12	A guide to crystalâ€related and nano―or microparticleâ€related tissue responses. FEBS Journal, 2020, 287, 818-832.	2.2	11
13	Potential of Renin-Angiotensin-Aldosterone System Modulations in Diabetic Kidney Disease: Old Players to New Hope!. Reviews of Physiology, Biochemistry and Pharmacology, 2020, 179, 31-71.	0.9	17
14	Neutrophils and Neutrophil Extracellular Traps Regulate Immune Responses in Health and Disease. Cells, 2020, 9, 2130.	1.8	13
15	Cellular and Molecular Mechanisms of Kidney Injury in 2,8-Dihydroxyadenine Nephropathy. Journal of the American Society of Nephrology: JASN, 2020, 31, 799-816.	3.0	54
16	â€~PARP'ing fibrosis: repurposing poly (ADP ribose) polymerase (PARP) inhibitors. Drug Discovery Today, 2020, 25, 1253-1261.	3.2	12
17	Neutrophils and Neutrophil Extracellular Traps Drive Necroinflammation in COVID-19. Cells, 2020, 9, 1383.	1.8	220
18	Renal ischemia/reperfusion injury: An insight on in vitro and in vivo models. Life Sciences, 2020, 256, 117860.	2.0	69

#	Article	IF	CITATIONS
19	Inhibitors of Calcium Oxalate Crystallization for the Treatment of Oxalate Nephropathies. Advanced Science, 2020, 7, 1903337.	5.6	27
20	Crystal Clots as Therapeutic Target in Cholesterol Crystal Embolism. Circulation Research, 2020, 126, e37-e52.	2.0	29
21	ER stress response mediates diabetic microvascular complications. Drug Discovery Today, 2019, 24, 2247-2257.	3.2	34
22	Mitochondria Permeability Transition versus Necroptosis in Oxalate-Induced AKI. Journal of the American Society of Nephrology: JASN, 2019, 30, 1857-1869.	3.0	81
23	Proteasome activator PA200 regulates myofibroblast differentiation. Scientific Reports, 2019, 9, 15224.	1.6	14
24	Angiotensin II type 2 receptor and angiotensin-converting enzyme 2 mediate ischemic renal injury in diabetic and non-diabetic rats. Life Sciences, 2019, 235, 116796.	2.0	29
25	The gut flora modulates intestinal barrier integrity but not progression of chronic kidney disease in hyperoxaluria-related nephrocalcinosis. Nephrology Dialysis Transplantation, 2019, 35, 86-97.	0.4	9
26	Editorial: Nano- and Microparticle-Induced Cell Death, Inflammation and Immune Responses. Frontiers in Immunology, 2019, 10, 844.	2.2	7
27	Multifactorial functions of the inflammasome component NLRP3 in pathogenesis of chronic kidney diseases. Kidney International, 2019, 96, 58-66.	2.6	90
28	Novel Insights into Crystal-Induced Kidney Injury. Kidney Diseases (Basel, Switzerland), 2018, 4, 49-57.	1.2	57
29	RGMb protects against acute kidney injury by inhibiting tubular cell necroptosis via an MLKL-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1475-E1484.	3.3	65
30	The macrophage phenotype and inflammasome component NLRP3 contributes to nephrocalcinosis-related chronic kidney disease independent from IL-1–mediated tissue injury. Kidney International, 2018, 93, 656-669.	2.6	159
31	Urinary Bladder vs Gastrointestinal Tissue: A Comparative Study of Their Biomechanical Properties for Urinary Tract Reconstruction. Urology, 2018, 113, 235-240.	0.5	17
32	The Long Pentraxin PTX3 Is an Endogenous Inhibitor of Hyperoxaluria-Related Nephrocalcinosis and Chronic Kidney Disease. Frontiers in Immunology, 2018, 9, 2173.	2.2	14
33	CXCL12 blockade preferentially regenerates lostÂpodocytes in cortical nephrons by targetingÂanÂintrinsic podocyte-progenitor feedback mechanism. Kidney International, 2018, 94, 1111-1126.	2.6	69
34	IL-22 sustains epithelial integrity in progressive kidney remodeling and fibrosis. Physiological Reports, 2018, 6, e13817.	0.7	17
35	Activated platelets induce MLKL-driven neutrophil necroptosis and release of neutrophil extracellular traps in venous thrombosis. Cell Death Discovery, 2018, 4, 6.	2.0	52
36	Genetic mitochondrial glycine amidinotransferase protein aggregate formation triggers microparticle sensing and kidney failure. Annals of Translational Medicine, 2018, 6, 315-315.	0.7	0

3

#	Article	IF	CITATIONS
37	Intestinal Dysbiosis, Barrier Dysfunction, and Bacterial Translocation Account for CKD–Related Systemic Inflammation. Journal of the American Society of Nephrology: JASN, 2017, 28, 76-83.	3.0	196
38	Crystal nephropathies: mechanisms of crystal-induced kidney injury. Nature Reviews Nephrology, 2017, 13, 226-240.	4.1	148
39	Circulating cathepsin-S levels correlate with GFR decline and sTNFR1 and sTNFR2 levels in mice and humans. Scientific Reports, 2017, 7, 43538.	1.6	15
40	Gene expression profiling of the Notch-AhR-IL22 axis at homeostasis and in response to tissue injury. Bioscience Reports, 2017, 37, .	1.1	20
41	Cellular and Molecular Mechanisms of Autoimmunity and Lupus Nephritis. International Review of Cell and Molecular Biology, 2017, 332, 43-154.	1.6	12
42	Cathepsin S inhibition combines control of systemic and peripheral pathomechanisms of autoimmune tissue injury. Scientific Reports, 2017, 7, 2775.	1.6	44
43	Phagocytosis of environmental or metabolic crystalline particles induces cytotoxicity by triggering necroptosis across a broad range of particle size and shape. Scientific Reports, 2017, 7, 15523.	1.6	45
44	Particles of different sizes and shapes induce neutrophil necroptosis followed by the release of neutrophil extracellular trap-like chromatin. Scientific Reports, 2017, 7, 15003.	1.6	97
45	Hyperoxaluria Requires TNF Receptors to Initiate Crystal Adhesion and Kidney Stone Disease. Journal of the American Society of Nephrology: JASN, 2017, 28, 761-768.	3.0	78
46	Tumor necrosis factor superfamily ligand mRNA expression profiles differ between humans and mice during homeostasis and between various murine kidney injuries. Journal of Biomedical Science, 2017, 24, 77.	2.6	10
47	Systems biology analysis reveals role of MDM2 in diabetic nephropathy. JCI Insight, 2016, 1, e87877.	2.3	34
48	The Immune System in Tissue Environments Regaining Homeostasis after Injury: Is "Inflammation― Always Inflammation?. Mediators of Inflammation, 2016, 2016, 1-9.	1.4	55
49	Regulated necrosis-related molecule mRNA expression in humans and mice and in murine acute tissue injury and systemic autoimmunity leading to progressive organ damage, and progressive fibrosis. Bioscience Reports, 2016, 36, .	1.1	32
50	P21 BETA-HYDROXYBUTYRATE INHIBITS NLRP3-MEDIATED INFLAMMATION AND DELAYS PROGRESSIVE RENAL FAILURE DURING PRIMARY HYPEROXALURIA RELATED KIDNEY STONE DISEASE. Kidney International Reports, 2016, 1, S10-S11.	0.4	1
51	Matters of life and death. How neutrophils die or survive along NET release and is "NETosisâ€Â=Ânecroptosis?. Cellular and Molecular Life Sciences, 2016, 73, 2211-2219.	2.4	90
52	Targeting Inflammation in So-Called Acute Kidney Injury. Seminars in Nephrology, 2016, 36, 17-30.	0.6	44
53	Murine Double Minute-2 Inhibition Ameliorates Established Crescentic Glomerulonephritis. American Journal of Pathology, 2016, 186, 1442-1453.	1.9	16
54	Crystallopathies. New England Journal of Medicine, 2016, 375, e29.	13.9	7

#	Article	IF	CITATIONS
55	PMA and crystalâ€induced neutrophil extracellular trap formation involves RIPK1â€RIPK3â€MLKL signaling. European Journal of Immunology, 2016, 46, 223-229.	1.6	200
56	Oxalate-induced chronic kidney disease with its uremic and cardiovascular complications in C57BL/6 mice. American Journal of Physiology - Renal Physiology, 2016, 310, F785-F795.	1.3	71
57	How Kidney Cell Death Induces Renal Necroinflammation. Seminars in Nephrology, 2016, 36, 162-173.	0.6	41
58	Crystallopathies. New England Journal of Medicine, 2016, 374, 2465-2476.	13.9	110
59	Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nature Communications, 2016, 7, 10274.	5.8	220
60	Cathepsin S Cleavage of Protease-Activated Receptor-2 on Endothelial Cells Promotes Microvascular Diabetes Complications. Journal of the American Society of Nephrology: JASN, 2016, 27, 1635-1649.	3.0	61
61	Necroinflammation in Kidney Disease. Journal of the American Society of Nephrology: JASN, 2016, 27, 27-39.	3.0	180
62	TO027BETA-HYDROXYBUTYRATE INHIBITS NLRP3-MEDIATED INFLAMMATION AND DELAYS PROGRESSIVE RENAL FAILURE DURING PRIMARY HYPEROXALURIA RELATED KIDNEY STONE DISEASE. Nephrology Dialysis Transplantation, 2016, 31, i73-i73.	0.4	0
63	Genexpressionsanalysen der Notch-AhR-IL 22-Achse bei Homöostase und als Reaktion auf Gewebeverletzung. Nieren- Und Hochdruckkrankheiten, 2016, 45, 352.	0.0	0
64	SP058DUAL ROLE OF SDFâ^1/CXCLâ^12 IN PODOCYTE INJURY AND REGENERATION. Nephrology Dialysis Transplantation, 2015, 30, iii399-iii399.	0.4	0
65	FO008CRYSTAL-RELATED NEPHROTOXICITY INVOLVES TUBULAR CELL NECROPTOSIS VIA THE RIPK3-MLKL PATHWAY. Nephrology Dialysis Transplantation, 2015, 30, iii4-iii4.	0.4	0
66	Neutrophil Extracellular Trap-Related Extracellular Histones Cause Vascular Necrosis in Severe GN. Journal of the American Society of Nephrology: JASN, 2015, 26, 2399-2413.	3.0	157
67	Cathepsin S inhibition suppresses systemic lupus erythematosus and lupus nephritis because cathepsin S is essential for MHC class II-mediated CD4 T cell and B cell priming. Annals of the Rheumatic Diseases, 2015, 74, 452-463.	0.5	88
68	MDM2 beyond cancer: podoptosis, development, inflammation, and tissue regeneration. Histology and Histopathology, 2015, 30, 1271-82.	0.5	19
69	NET-vermittelte extrazellulä Histone verursachen bei schwerer Glomerulonephritis eine vaskulä Nekrose. Nieren- Und Hochdruckkrankheiten, 2015, 44, 481-482.	0.0	0
70	Von Podozyten stammendes CXCL12 spielt bei der glomerulÄ r en SchÄ t igung und Regeneration eine Doppelrolle. Nieren- Und Hochdruckkrankheiten, 2015, 44, 487.	0.0	0
71	Blockade von Cathepsin S – ein neuer Therapieansatz der Lupus-Nephritis. Nieren- Und Hochdruckkrankheiten, 2015, 44, 491-492.	0.0	O
72	Synchronized renal tubular cell death involves ferroptosis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16836-16841.	3.3	801

#	Article	IF	CITATIONS
73	Toll-Like Receptor 4–Induced IL-22 Accelerates Kidney Regeneration. Journal of the American Society of Nephrology: JASN, 2014, 25, 978-989.	3.0	122
74	Molecular mechanisms of crystal-related kidney inflammation and injury. Implications for cholesterol embolism, crystalline nephropathies and kidney stone disease. Nephrology Dialysis Transplantation, 2014, 29, 507-514.	0.4	148
75	Macrophage Phenotype Controls Long-Term AKI Outcomesâ€"Kidney Regeneration versus Atrophy. Journal of the American Society of Nephrology: JASN, 2014, 25, 292-304.	3.0	178
76	The Antiviral Cytokines IFN- \hat{l}_{\pm} and IFN- \hat{l}_{2}^{2} Modulate Parietal Epithelial Cells and Promote Podocyte Loss. American Journal of Pathology, 2013, 183, 431-440.	1.9	105
77	Analysis of TNF-mediated recruitment and activation of glomerular dendritic cells in mouse kidneys by compartment-specific flow cytometry. Kidney International, 2013, 84, 116-129.	2.6	21
78	Nrf2 signalling promotes ex vivo tubular epithelial cell survival and regeneration via murine double minute (MDM)-2. Nephrology Dialysis Transplantation, 2013, 28, 2028-2037.	0.4	24
79	Podocyte loss involves <scp>MDM2</scp> â€driven mitotic catastrophe. Journal of Pathology, 2013, 230, 322-335.	2.1	57
80	Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL- $1\hat{l}^2$ secretion. Journal of Clinical Investigation, 2013, 123, 236-246.	3.9	364
81	Histones from Dying Renal Cells Aggravate Kidney Injury via TLR2 and TLR4. Journal of the American Society of Nephrology: JASN, 2012, 23, 1375-1388.	3.0	365
82	MDM2 (murine double minute-2) links inflammation and tubular cell healing during acute kidney injury in mice. Kidney International, 2012, 81, 1199-1211.	2.6	85
83	p53-Independent Roles of MDM2 in NF-κB Signaling: Implications for Cancer Therapy, Wound Healing, and Autoimmune Diseases. Neoplasia, 2012, 14, 1097-1101.	2.3	99
84	Uromodulin Triggers IL- $1\hat{l}^2$ a \in "Dependent Innate Immunity via the NLRP3 Inflammasome. Journal of the American Society of Nephrology: JASN, 2012, 23, 1783-1789.	3.0	127
85	Tumour necrosis factorâ€Î± drives Alport glomerulosclerosis in mice by promoting podocyte apoptosis. Journal of Pathology, 2012, 226, 120-131.	2.1	51
86	Anti-GBM Glomerulonephritis Involves IL-1 but Is Independent of NLRP3/ASC Inflammasome-Mediated Activation of Caspase-1. PLoS ONE, 2011, 6, e26778.	1.1	67
87	Combination of aspirin with telmisartan suppresses the augmented $TGF\hat{l}^2/smad$ signaling during the development of streptozotocin-induced type I diabetic nephropathy. Chemico-Biological Interactions, 2010, 185, 137-142.	1.7	29
88	Dentinal Defects in Endodontically Treated Teeth using NiTi Rotary vs Reciprocating Endodontic Instruments- A Systematic Review. Journal of Clinical and Diagnostic Research JCDR, 0, , .	0.8	0