
Shrikant R Mulay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9221725/publications.pdf Version: 2024-02-01

<u> <u>Shdikant P Millav</u></u>

#	Article	IF	CITATIONS
1	Synchronized renal tubular cell death involves ferroptosis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16836-16841.	3.3	801
2	Histones from Dying Renal Cells Aggravate Kidney Injury via TLR2 and TLR4. Journal of the American Society of Nephrology: JASN, 2012, 23, 1375-1388.	3.0	365
3	Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1Î ² secretion. Journal of Clinical Investigation, 2013, 123, 236-246.	3.9	364
4	Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nature Communications, 2016, 7, 10274.	5.8	220
5	Neutrophils and Neutrophil Extracellular Traps Drive Necroinflammation in COVID-19. Cells, 2020, 9, 1383.	1.8	220
6	PMA and crystalâ€induced neutrophil extracellular trap formation involves RIPK1â€RIPK3â€MLKL signaling. European Journal of Immunology, 2016, 46, 223-229.	1.6	200
7	Intestinal Dysbiosis, Barrier Dysfunction, and Bacterial Translocation Account for CKD–Related Systemic Inflammation. Journal of the American Society of Nephrology: JASN, 2017, 28, 76-83.	3.0	196
8	Necroinflammation in Kidney Disease. Journal of the American Society of Nephrology: JASN, 2016, 27, 27-39.	3.0	180
9	Macrophage Phenotype Controls Long-Term AKI Outcomes—Kidney Regeneration versus Atrophy. Journal of the American Society of Nephrology: JASN, 2014, 25, 292-304.	3.0	178
10	The macrophage phenotype and inflammasome component NLRP3 contributes to nephrocalcinosis-related chronic kidney disease independent from IL-1–mediated tissue injury. Kidney International, 2018, 93, 656-669.	2.6	159
11	Neutrophil Extracellular Trap-Related Extracellular Histones Cause Vascular Necrosis in Severe GN. Journal of the American Society of Nephrology: JASN, 2015, 26, 2399-2413.	3.0	157
12	Molecular mechanisms of crystal-related kidney inflammation and injury. Implications for cholesterol embolism, crystalline nephropathies and kidney stone disease. Nephrology Dialysis Transplantation, 2014, 29, 507-514.	0.4	148
13	Crystal nephropathies: mechanisms of crystal-induced kidney injury. Nature Reviews Nephrology, 2017, 13, 226-240.	4.1	148
14	Uromodulin Triggers IL-1β–Dependent Innate Immunity via the NLRP3 Inflammasome. Journal of the American Society of Nephrology: JASN, 2012, 23, 1783-1789.	3.0	127
15	Toll-Like Receptor 4–Induced IL-22 Accelerates Kidney Regeneration. Journal of the American Society of Nephrology: JASN, 2014, 25, 978-989.	3.0	122
16	Crystallopathies. New England Journal of Medicine, 2016, 374, 2465-2476.	13.9	110
17	The Antiviral Cytokines IFN-α and IFN-β Modulate Parietal Epithelial Cells and Promote Podocyte Loss. American Journal of Pathology, 2013, 183, 431-440.	1.9	105
18	p53-Independent Roles of MDM2 in NF-κB Signaling: Implications for Cancer Therapy, Wound Healing, and Autoimmune Diseases. Neoplasia, 2012, 14, 1097-1101.	2.3	99

#	Article	IF	CITATIONS
19	Particles of different sizes and shapes induce neutrophil necroptosis followed by the release of neutrophil extracellular trap-like chromatin. Scientific Reports, 2017, 7, 15003.	1.6	97
20	Matters of life and death. How neutrophils die or survive along NET release and is "NETosisâ€Â=Ânecroptosis?. Cellular and Molecular Life Sciences, 2016, 73, 2211-2219.	2.4	90
21	Multifactorial functions of the inflammasome component NLRP3 in pathogenesis of chronic kidney diseases. Kidney International, 2019, 96, 58-66.	2.6	90
22	Cathepsin S inhibition suppresses systemic lupus erythematosus and lupus nephritis because cathepsin S is essential for MHC class II-mediated CD4 T cell and B cell priming. Annals of the Rheumatic Diseases, 2015, 74, 452-463.	0.5	88
23	MDM2 (murine double minute-2) links inflammation and tubular cell healing during acute kidney injury in mice. Kidney International, 2012, 81, 1199-1211.	2.6	85
24	Mitochondria Permeability Transition versus Necroptosis in Oxalate-Induced AKI. Journal of the American Society of Nephrology: JASN, 2019, 30, 1857-1869.	3.0	81
25	Hyperoxaluria Requires TNF Receptors to Initiate Crystal Adhesion and Kidney Stone Disease. Journal of the American Society of Nephrology: JASN, 2017, 28, 761-768.	3.0	78
26	Oxalate-induced chronic kidney disease with its uremic and cardiovascular complications in C57BL/6 mice. American Journal of Physiology - Renal Physiology, 2016, 310, F785-F795.	1.3	71
27	CXCL12 blockade preferentially regenerates lostÂpodocytes in cortical nephrons by targetingÂanÂintrinsic podocyte-progenitor feedback mechanism. Kidney International, 2018, 94, 1111-1126.	2.6	69
28	Renal ischemia/reperfusion injury: An insight on in vitro and in vivo models. Life Sciences, 2020, 256, 117860.	2.0	69
29	Anti-GBM Glomerulonephritis Involves IL-1 but Is Independent of NLRP3/ASC Inflammasome-Mediated Activation of Caspase-1. PLoS ONE, 2011, 6, e26778.	1.1	67
30	RGMb protects against acute kidney injury by inhibiting tubular cell necroptosis via an MLKL-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1475-E1484.	3.3	65
31	Cathepsin S Cleavage of Protease-Activated Receptor-2 on Endothelial Cells Promotes Microvascular Diabetes Complications. Journal of the American Society of Nephrology: JASN, 2016, 27, 1635-1649.	3.0	61
32	Podocyte loss involves <scp>MDM2</scp> â€driven mitotic catastrophe. Journal of Pathology, 2013, 230, 322-335.	2.1	57
33	Novel Insights into Crystal-Induced Kidney Injury. Kidney Diseases (Basel, Switzerland), 2018, 4, 49-57.	1.2	57
34	The Immune System in Tissue Environments Regaining Homeostasis after Injury: Is "Inflammation― Always Inflammation?. Mediators of Inflammation, 2016, 2016, 1-9.	1.4	55
35	Cellular and Molecular Mechanisms of Kidney Injury in 2,8-Dihydroxyadenine Nephropathy. Journal of the American Society of Nephrology: JASN, 2020, 31, 799-816.	3.0	54
36	Activated platelets induce MLKL-driven neutrophil necroptosis and release of neutrophil extracellular traps in venous thrombosis. Cell Death Discovery, 2018, 4, 6.	2.0	52

#	Article	IF	CITATIONS
37	Tumour necrosis factorâ€Î± drives Alport glomerulosclerosis in mice by promoting podocyte apoptosis. Journal of Pathology, 2012, 226, 120-131.	2.1	51
38	The gut-liver-kidney axis: Novel regulator of fatty liver associated chronic kidney disease. Pharmacological Research, 2020, 152, 104617.	3.1	50
39	Phagocytosis of environmental or metabolic crystalline particles induces cytotoxicity by triggering necroptosis across a broad range of particle size and shape. Scientific Reports, 2017, 7, 15523.	1.6	45
40	Targeting Inflammation in So-Called Acute Kidney Injury. Seminars in Nephrology, 2016, 36, 17-30.	0.6	44
41	Cathepsin S inhibition combines control of systemic and peripheral pathomechanisms of autoimmune tissue injury. Scientific Reports, 2017, 7, 2775.	1.6	44
42	How Kidney Cell Death Induces Renal Necroinflammation. Seminars in Nephrology, 2016, 36, 162-173.	0.6	41
43	Systems biology analysis reveals role of MDM2 in diabetic nephropathy. JCI Insight, 2016, 1, e87877.	2.3	34
44	ER stress response mediates diabetic microvascular complications. Drug Discovery Today, 2019, 24, 2247-2257.	3.2	34
45	Regulated necrosis-related molecule mRNA expression in humans and mice and in murine acute tissue injury and systemic autoimmunity leading to progressive organ damage, and progressive fibrosis. Bioscience Reports, 2016, 36, .	1.1	32
46	Combination of aspirin with telmisartan suppresses the augmented TGFβ/smad signaling during the development of streptozotocin-induced type I diabetic nephropathy. Chemico-Biological Interactions, 2010, 185, 137-142.	1.7	29
47	Angiotensin II type 2 receptor and angiotensin-converting enzyme 2 mediate ischemic renal injury in diabetic and non-diabetic rats. Life Sciences, 2019, 235, 116796.	2.0	29
48	Crystal Clots as Therapeutic Target in Cholesterol Crystal Embolism. Circulation Research, 2020, 126, e37-e52.	2.0	29
49	Inhibitors of Calcium Oxalate Crystallization for the Treatment of Oxalate Nephropathies. Advanced Science, 2020, 7, 1903337.	5.6	27
50	Nrf2 signalling promotes ex vivo tubular epithelial cell survival and regeneration via murine double minute (MDM)-2. Nephrology Dialysis Transplantation, 2013, 28, 2028-2037.	0.4	24
51	Analysis of TNF-mediated recruitment and activation of glomerular dendritic cells in mouse kidneys by compartment-specific flow cytometry. Kidney International, 2013, 84, 116-129.	2.6	21
52	Insights from a Pan India Sero-Epidemiological survey (Phenome-India Cohort) for SARS-CoV2. ELife, 2021, 10, .	2.8	21
53	Gene expression profiling of the Notch-AhR-IL22 axis at homeostasis and in response to tissue injury. Bioscience Reports, 2017, 37, .	1.1	20
54	MDM2 beyond cancer: podoptosis, development, inflammation, and tissue regeneration. Histology and Histopathology, 2015, 30, 1271-82.	0.5	19

#	Article	IF	CITATIONS
55	Involvement of Inflammasome Components in Kidney Disease. Antioxidants, 2022, 11, 246.	2.2	19
56	Urinary Bladder vs Gastrointestinal Tissue: A Comparative Study of Their Biomechanical Properties for Urinary Tract Reconstruction. Urology, 2018, 113, 235-240.	0.5	17
57	IL-22 sustains epithelial integrity in progressive kidney remodeling and fibrosis. Physiological Reports, 2018, 6, e13817.	0.7	17
58	Potential of Renin-Angiotensin-Aldosterone System Modulations in Diabetic Kidney Disease: Old Players to New Hope!. Reviews of Physiology, Biochemistry and Pharmacology, 2020, 179, 31-71.	0.9	17
59	Role of dietary modifications in the management of type 2 diabetic complications. Pharmacological Research, 2021, 168, 105602.	3.1	17
60	Murine Double Minute-2 Inhibition Ameliorates Established Crescentic Glomerulonephritis. American Journal of Pathology, 2016, 186, 1442-1453.	1.9	16
61	Circulating cathepsin-S levels correlate with GFR decline and sTNFR1 and sTNFR2 levels in mice and humans. Scientific Reports, 2017, 7, 43538.	1.6	15
62	The Long Pentraxin PTX3 Is an Endogenous Inhibitor of Hyperoxaluria-Related Nephrocalcinosis and Chronic Kidney Disease. Frontiers in Immunology, 2018, 9, 2173.	2.2	14
63	Proteasome activator PA200 regulates myofibroblast differentiation. Scientific Reports, 2019, 9, 15224.	1.6	14
64	Neutrophils and Neutrophil Extracellular Traps Regulate Immune Responses in Health and Disease. Cells, 2020, 9, 2130.	1.8	13
65	Cellular and Molecular Mechanisms of Autoimmunity and Lupus Nephritis. International Review of Cell and Molecular Biology, 2017, 332, 43-154.	1.6	12
66	â€~PARP'ing fibrosis: repurposing poly (ADP ribose) polymerase (PARP) inhibitors. Drug Discovery Today, 2020, 25, 1253-1261.	3.2	12
67	A guide to crystalâ€related and nano―or microparticleâ€related tissue responses. FEBS Journal, 2020, 287, 818-832.	2.2	11
68	Tumor necrosis factor superfamily ligand mRNA expression profiles differ between humans and mice during homeostasis and between various murine kidney injuries. Journal of Biomedical Science, 2017, 24, 77.	2.6	10
69	An Imaging and Computational Algorithm for Efficient Identification and Quantification of Neutrophil Extracellular Traps. Cells, 2022, 11, 191.	1.8	10
70	The gut flora modulates intestinal barrier integrity but not progression of chronic kidney disease in hyperoxaluria-related nephrocalcinosis. Nephrology Dialysis Transplantation, 2019, 35, 86-97.	0.4	9
71	Crystallopathies. New England Journal of Medicine, 2016, 375, e29.	13.9	7
72	Editorial: Nano- and Microparticle-Induced Cell Death, Inflammation and Immune Responses. Frontiers in Immunology, 2019, 10, 844.	2.2	7

#	Article	IF	CITATIONS
73	6,7-Dihydroxycoumarin ameliorates crystal-induced necroptosis during crystal nephropathies by inhibiting MLKL phosphorylation. Life Sciences, 2021, 271, 119193.	2.0	7
74	Advanced non-invasive diagnostic techniques for visualization and estimation of kidney fibrosis. Drug Discovery Today, 2021, 26, 2053-2063.	3.2	4
75	Endoplasmic Reticulum Stress and Renin-Angiotensin System Crosstalk in Endothelial Dysfunction. Current Molecular Pharmacology, 2023, 16, 139-146.	0.7	2
76	P21 BETA-HYDROXYBUTYRATE INHIBITS NLRP3-MEDIATED INFLAMMATION AND DELAYS PROGRESSIVE RENAL FAILURE DURING PRIMARY HYPEROXALURIA RELATED KIDNEY STONE DISEASE. Kidney International Reports, 2016, 1, S10-S11.	0.4	1
77	Editorial: Negative Regulators of Innate Immunity and Their Role in Host Responses to Injury and Infection. Frontiers in Immunology, 2022, 13, 891919.	2.2	1
78	SP058DUAL ROLE OF SDFâ^'11/CXCLâ^'12 IN PODOCYTE INJURY AND REGENERATION. Nephrology Dialysis Transplantation, 2015, 30, iii399-iii399.	0.4	0
79	FO008CRYSTAL-RELATED NEPHROTOXICITY INVOLVES TUBULAR CELL NECROPTOSIS VIA THE RIPK3-MLKL PATHWAY. Nephrology Dialysis Transplantation, 2015, 30, iii4-iii4.	0.4	0
80	Editorial: Immune Regulation in Kidney Diseases: Importance, Mechanism and Translation. Frontiers in Medicine, 2021, 8, 616880.	1.2	0
81	NET-vermittelte extrazellulä Histone verursachen bei schwerer Glomerulonephritis eine vaskulä Nekrose. Nieren- Und Hochdruckkrankheiten, 2015, 44, 481-482.	0.0	0
82	Von Podozyten stammendes CXCL12 spielt bei der glomerulÄ r en SchÄ d igung und Regeneration eine Doppelrolle. Nieren- Und Hochdruckkrankheiten, 2015, 44, 487.	0.0	0
83	Blockade von Cathepsin S – ein neuer Therapieansatz der Lupus-Nephritis. Nieren- Und Hochdruckkrankheiten, 2015, 44, 491-492.	0.0	0
84	TO027BETA-HYDROXYBUTYRATE INHIBITS NLRP3-MEDIATED INFLAMMATION AND DELAYS PROGRESSIVE RENAL FAILURE DURING PRIMARY HYPEROXALURIA RELATED KIDNEY STONE DISEASE. Nephrology Dialysis Transplantation, 2016, 31, i73-i73.	0.4	0
85	Genexpressionsanalysen der Notch-AhR-IL 22-Achse bei Homöostase und als Reaktion auf Gewebeverletzung. Nieren- Und Hochdruckkrankheiten, 2016, 45, 352.	0.0	0
86	Dentinal Defects in Endodontically Treated Teeth using NiTi Rotary vs Reciprocating Endodontic Instruments- A Systematic Review. Journal of Clinical and Diagnostic Research JCDR, 0, , .	0.8	0
87	Genetic mitochondrial glycine amidinotransferase protein aggregate formation triggers microparticle sensing and kidney failure. Annals of Translational Medicine, 2018, 6, 315-315.	0.7	0
88	Expression Profiling of Tumor Necrosis Factor Superfamily Ligands mRNA in Healthy and Injured Murine Kidneys. Methods in Molecular Biology, 2021, 2248, 231-241.	0.4	0